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a b s t r a c t

In this study, an efficient method will be developed for the phase-field model of multi-component
immiscible phases. The formulation of surface tension requires the interfaces to satisfy the hyperbolic
tangent property. However, the interfacial transitions between different phases are not hyperbolic
tangent profiles. The enclosed area is not preserved although the total mass is conserved by the original
Cahn–Hilliard equation. This study is an extended research based on our previous study (Li et al., 2016).
This work aims to apply the modified Cahn–Hilliard model into the multi-phase system. The interface
is forced to be hyperbolic tangent by the modified Cahn–Hilliard system. The computational accuracy
of the surface tension is improved under our multiphase framework. The mass loss of each phase
can be reduced and the enclosed area can be preserved by the proposed method. We show various
numerical results to demonstrate the robustness of the proposed modified model.

© 2022 ElsevierMasson SAS. All rights reserved.
1. Introduction

The interface behavior between different phases is compro-
ised by the viscosity, velocity and density of each component

1,2]. This phenomenon widely exists in a wide range of biomedi-
al, physical and chemical processes, has been extensively studied
hrough different interface capturing/tracking methods [3–6]. For
xample, emulsion produced by mixing two immiscible fluids,
lays significant roles in various types of applications such as
rug delivery and pharmacology research [7], multiphase physical
ield coupling simulation [8,9] and fusion of chemical factors
10–12]. Cahn–Hilliard(CH) equation has been proposed of spin-
dal decomposition for a binary alloy and usually used to describe
he physical interfaces between heterogeneous phases [13]. Al-
hough the original CH equation can satisfy basic physical prop-
rty, properties such as hyperbolic tangent and conservation of
nclosing area cannot be satisfied. The hyperbolic tangent prop-
rty can be viewed as a singular limit of the phase field equations
or phase transitions [14,15], while there is a few research focus
n this feature. Therefore, it is necessary to modify the original
odel to satisfy the requirements without changing the original
haracteristics.
How to develop an efficient numerical method for the multi-

omponent immiscible flows has attracted widespread atten-
ion. Nichols et al. [16,17] proposed a volume-of-fluid model
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ttps://doi.org/10.1016/j.euromechflu.2022.04.013
997-7546/© 2022 Elsevier Masson SAS. All rights reserved.
for determining the location of interfaces in multi-component
materials by the volume fraction. Francois and Shyy [18] pre-
sented the immersed boundary method, which had been proved
of high efficiency by selecting binary-fluid flow with kinds of
fluid properties. This method avoided the problem of generating
a body conformal grid and greatly improved the efficiency of
computation [19–21]. The level set method is a popular computa-
tional technique to track moving interfaces between multiphase
flows [22], which gets smooth results without sharp faults by
using an implicit interface as a zero-level set of the auxiliary
functional [23]. However, mass conservation of multi-component
systems could not be guaranteed under this framework. Lowen-
grub and Truskinovsky [24] proposed a phase-field model cou-
pled with multiple fluids with different densities. This method
had been widely used for simulating the state and dynamical
behavior of multiphase flows. Under their framework, the thin
thickness transition regions were obtained with the condition
of mass conservation and energy dissipation by introducing a
conserved order parameter. Kim et al. [25–27] applied a modified
phase-field model to simulate arbitrary combination of interfaces
between different phases. In their work, a conservative multi-
grid method for the ternary CH system was established with
second-order accuracy and unconditional stability.

This paper will describe the design and implementation of
a multi-component phase-field model with a modified multi-
component CH equation under the hydrodynamic framework.
Due to the convection terms of the fluids, the interfacial transition
between multiple phases is not hyperbolic, which is significant
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or the calculation of the surface tension and leads to the non-
onservation of the area of the closed area. To address these
hortcomings, a fidelity term will be added to the original CH
odel. The interfacial transition can be represented by a explicit
moothing flow. The modified CH model forces the interface to
atisfy the hyperbolic tangent property and significantly reduced
he mass loss of each phase. Furthermore, the surface tension
an be computed accurately by the modified CH model and the
omputation is not influenced by the over-determined issue. The
iscretization of the coupling equations is achieved under the
inite difference framework, which can be solved by a nonlinear
ultigrid method. Numerical examples are carried out to verify

he capability of the proposed modified model. Furthermore, we
ompare the results obtained by the original and modified model
n detail to illustrate the significance of the modification.

The remainder of this paper is organized as follows. Section 2
ntroduces the original energy function of multiphase fluid flows
nd generates the modified energy function. Section 3 describes
he numerical solution of the proposed multiphase model. Nu-
erical examples are carried out in Section 4. Finally, concluding

emarks are given in Section 5.

. Methodology

.1. The mixture of N-component immiscible fluids

The non-dimensional N-component system is obtained by
oupling the CH equation with the Navier–Stokes(NS) equation
s

(c)
∂u(x, t)
∂t

= −ρ(c)u(x, t) · ∇u(x, t) − ∇p(x, t)

+
1
Re

∇ ·
[
η(c)

(
∇u(x, t) + ∇u(x, t)T

)]
+ SF, (1a)

· u(x, t) = 0, (1b)
∂ck(x, t)
∂t

+ u(x, t) · ∇ck(x, t) =
1
Pe
∆µk(x, t), (1c)

k(x, t) = f (ck) − ε2∆ck(x, t). (1d)

ote that c(x, t) = (c1, c2, . . . , cN ), u(x, t), p(x, t), and µk(x, t)
are the vector-value phase variable, velocity field, pressure field,
and chemical potential of the phase k, respectively. The dimen-
sionless parameters Re and Pe are the Reynolds number and
Péclet number, respectively. Furthermore, f (ck) = ∂F/∂ck is
the external force, where F (c) =

∑N
k=1 (1 − ck)2 c2k /4 is the

fourth-order polynomial potential functional. We use ε to denote
the finite thickness of the mathematically sharp interfaces be-
tween different phases. Note that ρ(c) =

∑N
k=1 ckρk and η(c) =∑N

k=1 ckηk indicate the density and viscosity of multiphase in-
compressible fluid [24,28], respectively. In addition, we use SF
to denote the surface tension force, which plays a key role in
handling with multi-component system especially when the ex-
treme topological changes happens to the interface [25,29]. Gen-
erally, the N-phase system has N(N − 1)/2 possible interfaces.
Considering the following two cases:{
Case 1 : N(N − 1)/2 ≤ N, N ≤ 3,
Case 2 : N(N − 1)/2 > N, N ≥ 4.

(2)

For the first case, we illustrate with the example of three-
phase flows. With respect to the given physical interface Γkj
between phase k(Ωk) and phase j(Ωj), σkj denotes to be the
surface tension coefficients and is decomposed into the specific
surface tension coefficients σ1, σ2 and σ3 as:

σ = σ + σ , σ = σ + σ , σ = σ + σ , (3)
12 1 2 23 2 3 13 1 3
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which yields

σ1 = (σ12 + σ13 − σ23) /2, σ2 = (σ12 + σ23 − σ13) /2,
σ3 = (σ13 + σ23 − σ12) /2.

(4)

For the second case(N ≥ 4), we illustrate with the example
of four-phase fluids. We should remark that the solution may
not exist of the system generated by the decomposition [25].
However, we can possess a unique solution by applying some
restrictions on the handling of surface tension. Here we limit
the over-determined system under the guidance of least square
idea. Note that we have no difficulty for solving the multi-phase
system with over-determined issues. The physical surface tension
coefficients σkj are defined as:

σ12 = σ1 + σ2, σ23 = σ2 + σ3, σ13 = σ1 + σ3,

σ14 = σ1 + σ4, σ24 = σ2 + σ4, σ34 = σ3 + σ4.
(5)

These four unknown σ1, σ2, σ3 and σ4 can be calculated by
solving the linear system (5) with the least square method. Let
us consider the over-determined problem, i.e. Aσ = Y , where

A =

⎡⎢⎣1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

⎤⎥⎦
T

, σ =
[
σ1 σ2 σ3 σ4

]T
,

Y =
[
σ12 σ23 σ13 σ14 σ24 σ34

]T
.

(6)

By minimizing ∥Aσ − Y∥
2, we can obtain σ = (ATA)−1ATY . Thus,

the surface tension force of multi-component fluid system can be
defined as

SF :=

N∑
k=1

SFk =

N∑
k=1

σkκ (ck)N (ck) δ (ck) , (7)

where κ (ck) = ∇ · (∇ck/|∇ck|) is the mean curvature, n(ck) =

(∇ck/|∇ck|) is the unit normal vector and δ(ck) = |∇ck| is the
smoothed Dirac delta function of the kth fluid interface.

It is remarkable that the constraints on the model parameters
limit the applicability of our theory and the construction of the
multi-phase CH model does not satisfy the conditions of physical
consistency with an increasing number of components. How-
ever, the proposed method with least squares procedure makes
mathematical sense and is appropriate in this paper. For more
investigation of free-energy functional or the diffusion equations
of the multicomponent system, Tóth and his collaborators pro-
vided series physically deep Refs. [30,31], which compensated for
the lack of mathematical and physical consistency in the mul-
ticomponent model. Based on their framework, the free energy
density landscape has no multicomponent local minima, which
prevents the system from falling into a multicomponent homoge-
neous state during spinodal decomposition. To demonstrate the
physical consistency of the hydrodynamic system, they derived
dynamic equations describing the time evolution of an isothermal
multicomponent liquid mixture with the compact mathematical
formulation, which can be applied for many liquid systems of
practical importance featuring variable density. More multiphase-
field theories can be found in [32,33]. Although the classical
physical property such as mass conservation can be satisfied by
the original CH model, the following issues cannot be consoled:
(i) Non-physical motion influenced by the model. (ii) Sharpened
interface without hyperbolic tangent property. (iii) The enclosed
area by the interfaces is not preserved. In order to solve the
problems mentioned above, we modified the original model in
the next subsection.
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.2. The modification of the N-component Canh–Hilliard Equation

For N-component system with incompressible property [28],
e have

1 + c2 + · · · + ck + · · · + cN = 1, (8)

where ck represents the volume fraction of kth fluid and N is
the number of phases. The original N-component CH equation
Eqs. (1c) and (1d) can be derived from the Helmholtz free energy
functional:

ECH =

N∑
k=1

Ei =

N∑
k=1

∫
Ω

(
F (ck) +

ε2

2
|∇ck|2

)
dx. (9)

The original CH equation derived by a ‘gradient flow’ as [34]:

(ck)t = M∆
δEk

δck
, (10)

here µk = δEk/δck is the chemical potential of phase k and can
be derived from the energy functional Eq. (9) as:

d
dξ

Ek(ck + ξψ)
⏐⏐⏐⏐
ξ=0

=

∫
Ω

(
ψF ′(ck) + ε2∇ψ · ∇ck

)
dx

=

∫
Ω

(
F ′(ck) − ε2∆ck

)
ψdx +

∫
∂Ω

ε2
∂ck
∂n
ψds

=

∫
Ω

(
F ′(ck) − ε2∆ck

)
ψdx.

(11)

Here
∫
Ω
ψdx = 0 and ∂ck/∂n = 0 at ∂Ω . Thus, the chemical

otential of the N-component system can be obtained by

k =
δECH

δck
= F ′(ck) − ε2∆ck. (12)

o keep Eq. (8), the modified term β(c) has been added to the
chemical potential such that

µk(x, t) = F ′(ck(x, t)) − ε2∆ck(x, t) + β(c)ck, (13)

here β(c) = −
∑N

k=1 F
′ (ck), which can be derived from

=
∂(
∑N

k=1 ck)
∂t

=

N∑
k=1

∂ck
∂t

= M∆
N∑

k=1

µk

= M∆
N∑

k=1

(
F ′ (ck)− ε2∆ck + β(c)ck

)
= M∆

(
N∑

k=1

F ′(ck) +

N∑
k=1

β(c)ck

)
,

After that the N-component CH model can be described as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ck
∂t

(x, t) = M∆µk(x, t), x ∈ Ω, 0 < t ≤ T ,

µk(x, t) = F ′(ck(x, t)) − ε2∆ck(x, t) − β(c)ck,
∂µk(x, t)
∂n

= 0, x ∈ ∂Ω.

(14)

o satisfy hyperbolic tangent properties [35], a penalty term has
een added into Eq. (14) and obtain the modified N-component
H system as:
∂ck
∂t

(x, t) =
1
Pe
∆µk

+ λ
1
Pe

(
∆ck −

1
√
2ε

∇ ·

(
(1 − ck) ck

∇ck
|∇ck|

))
, x ∈ Ω, 0 < t ≤ T ,

µk(x, t) = F ′(ck) − ε2∆ck + β(c)ck,
∂µk(x, t)

= 0, x ∈ ∂Ω.

∂n
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Therefore, the modified phase-field model under hydrodynamic
framework can be rewritten as

ρ(c)
∂u(x, t)
∂t

= −ρ(c)u(x, t) · ∇u(x, t)

− ∇p(x, t) +
1
Re

∇ ·
[
η(c)

(
∇u(x, t) + ∇u(x, t)T

)]
+ SF,

∇ · u(x, t) = 0,
∂ck(x, t)
∂t

+ u(x, t) · ∇ck =
1
Pe
∆µk(x, t)

+
λ

Pe

(
∆ck −

1
√
2ε

∇ ·

(
(1 − ck)ck

∇ck
|∇ck|

))
,

µk(x, t) = f (ck) − ε2∆ck − β(c)ck.

(15)

. Numerical solution

Let us define Nx × Ny as the number of cells in the com-
utational domain, where Nx and Ny are even integers. Let h
e the uniform mesh size and the center of each cell Ωij can
e denoted as (xi, yj) :=

(
(i − 1

2 )h, (j − 1
2 )h
)
for i = 1, . . . ,Nx

and j = 1, . . . ,Nj. Therefore, vertices of cells can be denoted
as (xi+ 1

2
, yj+ 1

2
) := (ih, jh). Let cnk denote the approximation

of the concentration of the kth component at time n∆t , where
∆t = T/Nt is the temporal step, T is the total computational
time and Nt is the total number of computational time steps. We
use a staggered marker-and-cell (MAC) mesh [36], which contains
the pressure field and phase-field at the center of cells and the
velocity fields at cell interfaces. The updated un+1, cn+1 and pn+1

n each step can be solved by the calculated value un and cn:

(cn)
un+1

− un

∆t
+ ρ(cn)un

· ∇dun

= −∇dpn+1
+

1
Re

∇d · η
(
cn
) [

∇dun
+
(
∇dun)T ]

+ SFn, (16a)

∇d · un+1
= 0, (16b)

cn+1
k − cnk
∆t

+
(
un+1

· ∇dcnk
)

=
1
Pe
∆dµ

n+1
k +

λ

Pe

(
∆dcnk −

1
√
2ε

∇d ·

(
(1 − cnk )c

n
k

∇dcnk
|∇dcnk |

))
,

(16c)

µn+1
k = f (cn+1

k ) +
cn+1
k

4
−

cnk
4

− ε2∆dcn+1
k + β(cnk )c

n
k . (16d)

ere, ∇d and ∇d· are the discrete gradient and divergence oper-
ators, respectively. The projection method [37–40] is performed
to handle the incompressible NS equation as follows:

Step1. Initialization of the phase-field c0, velocity field u0, the
surface tension force SF0, density ρ0 and viscosity η0.

Step2. Formulation based on the NS functional Eqs. (16a) and
16b). The intermediate velocity field u∗ can be solved as

(cn)
u∗

− un

∆t
+ ρ(cn)un

· ∇dun
=

1
Re

∇d · η
(
cn
)[

∇dun
+
(
∇dun)T ]

+ SFn,
(17)

here the convection term un
·∇dun can be solved by a ENO pro-

edure proposed in Ref. [41]. Considering the following equation

un+1
− u∗

∆t
= −

1
ρ(cn)

∇dpn+1, (18)

here the velocity field un+1 satisfies ∇d · un+1
= 0. Applied the

divergence operator to Eq. (18), the pressure of (n+ 1) time step
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an be obtained as

d ·

(
1

ρ(cn)
∇dpn+1

)
=

1
∆t

∇d · u∗. (19)

ere we use a multigrid method for the computation of pressure
n+1 in this Poisson equation as

d ·

(
1
ρn ∇dpn+1

ij

)
=

( pn+1
i+1,j

ρn
i+ 1

2 ,j

+
pn+1
i−1,j

ρn
i− 1

2 ,j

+
pn+1
i,j+1

ρn
i,j+ 1

2

+
pn+1
i,j−1

ρn
i,j− 1

2

−

(
1

ρn
i+ 1

2 ,j

+
1

ρn
i− 1

2 ,j

+
1

ρn
i,j+ 1

2

+
1

ρn
i,j− 1

2

)
pn+1
ij

)
/h2.

herefore, the velocity field can be updated as un+1
= u∗

−

∆t∇dpn+1/ρ(cn).

Step3. Formulation based on the CH functional Eqs. (16c) and
(16d). With the known cn and un+1, we compute the phase-field
cn+1 by a nonlinear full approximation storage multi-grid method
at the implicit time level. The second-order central difference
scheme is used for discretization of Eqs. (16c) and (16d). For
more details of solving the nonlinear system with the multi-grid
method, please refer to [42,43].

4. Experimental tests

In this section, various numerical experiments such as the evo-
lution of triple junction with the prescribed contact angle, shape
relaxation under multi-component liquid background, a conver-
gence test with a rotate disk, deformation under shear flow,
the simulation of falling droplet and the simulation of Kelvin–
Helmholtz instability with ternary fluids, have been performed
to demonstrate the efficiency of the proposed method. Unless
otherwise specified, we will choose the computational domain
as Ω = [0, 1] × [0, 1] with a 256 × 256 mesh gird and use
the following parameters in the numerical simulations: λ = 0.1,
Re = 200, ε = 5h/(4

√
2atanh(0.9)), Pe = 1/ε, and ∆t = 5h2.

.1. Triple junction with a prescribed contact angle

In this section, we investigate the equilibrium phase interface
ith a prescribed contact angle, which is denoted as θ . Since the
riginal CH model does not conserve the volume, there will be
loss of accuracy during the computation. Denoting the two-
imension velocity field as v := (u, v). The initial conditions are
hosen as
u(x, y, 0) = v(x, y, 0) = 0, p(x, y, 0) = 0,
c1(x, y, 0) = 0.5 + 0.5 tanh ((|x − 0.25| + |x − 0.55|

+|y − 0.50| + |y − 0.80| − 0.6)/(2
√
2ε)
)
,

c2(x, y, 0) = 0.5 + 0.5 tanh ((|x − 0.25| + |x − 0.55|

+|y − 0.50| + |y − 0.20| − 0.6)/(2
√
2ε)
)
,

c3(x, y, 0) = 0.5 + 0.5 tanh ((|x − 0.55| + |x − 0.85|

+|y − 0.35| + |y − 0.65| − 0.6)/(2
√
2ε)
)
,

c4(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0) − c3(x, y, 0).

(20)

et us denote θ1, θ2 and θ3 as the interfacial angles of phase 1(red
region), phase 2(blue region) and phase 3(green region), respec-
tively. The interfacial angles reflect the equilibrium of surface
tensions between different phases, i.e. θ1 + θ2 + θ3 = 2π and
in(θ1)/σ23 = sin(θ2)/σ13 = sin(θ3)/σ12, where σij is the surface
tension between phase k and phase j. The numerical simulation is
performed until ∥cn+1

k −cnk ∥2/∥cnk ∥2 ≤ 1e−6. Fig. 1 demonstrates
he evolution of ternary immiscible liquids in another liquid from
197
an initially rectangular state to an equilibrium state. Here we
use σ1 = σ2 = σ3 = 1, which causes the interfacial angles
to satisfy θ1 = θ2 = θ3 = 2π/3 at the equilibrium state.
The numerical simulations show that the results by the proposed
scheme are consistent with the theoretical results. Meanwhile,
the proposed model can capture the interface deformation well
and conserve the enclosed area of multiple phases by comparing
with the original CH model. In Fig. 1(c), we plot the 0.5 level
contour line at the indicated time t = 1.5. The solid lines show
the results of the modified CH model and the dash lines show
the results of the original CH model. It is obvious that the results
obtained by the modified model significantly reduce the enclosed
area loss.

4.2. Coalescence of two kissing bubbles under ternary liquid back-
ground

In this section, the simulation of shape relaxation by two
kissing circles under ternary liquids background has been demon-
strated. The initial conditions are chosen as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, 0) = v(x, y, 0) = 0, p(x, y, 0) = 0,
c1(x, y, 0) = 0.5

+ 0.5 tanh
(
(0.2 −

√
|x − 0.5|2 + (y − 0.5)2)/(2

√
2ε)
)
,

c2(x, y, 0) = 0.5 − 0.5 tanh
(
(1 − c1)(x − 0.3)/(2

√
2ε)
)
,

c3(x, y, 0) = 0.5 + 0.5 tanh
(
(1 − c1)(x − 0.7)/(2

√
2ε)
)
,

c4(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0) − c3(x, y, 0).

(21)

As can be seen from Fig. 2, the merging deformation of two
ircles next to each other has appeared under the influence of
urface tension. By comparing the results of Fig. 2(a) and (b) at
ifferent indicated time, we can see that the proposed model
an conserve the enclosed area under the premise of keeping
he original mechanism. In order to further study the volume
onservation of multi-component liquid, we define the polygonal
rea A(φ) as

(φ) :=

s−1∑
i=0

(xiyi+1 − yixi+1) /2 (22)

hich is surrounded by pi(x, y)(i = 0, 1, . . . , s − 1) as shown in
Fig. 3(a). In Fig. 3(b), the comparison of the normalized polygonal
areas between the modified CH model and the original CH model
has been demonstrated. From these results, it is obvious that the
modified model is indeed volume conservative, while the area
obtained by the original model decreases.

4.3. Convergence test

To investigate the convergence rates with respect to space,
we demonstrate various tests with increasingly finer grids h =

/2n(n = 6, 7, 8) in the computational domain Ω = [0, 1] ×

[0, 1]. We use the following initial conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, 0) = 20(y − 0.5), v(x, y, 0) = −20(x − 0.5),
p(x, y, 0) = 0,
c1(x, y, 0) = 0.5

+ 0.5 tanh
(
(0.1 −

√
(x − 0.25)2 + (y − 0.5)2)/(2

√
2ε)
)
,

c2(x, y, 0) = 0.5

+ 0.5 tanh
(
(0.2 −

√
(x − 0.75)2 + (y − 0.5)2)/(2

√
2ε)
)
,

c3(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0).



Q. Xia, J. Kim and Y. Li European Journal of Mechanics / B Fluids 95 (2022) 194–204

i
t

w
t

Fig. 1. The dynamical behaviors of multi-component liquid with a prescribed contact angle. (a) is the simulation by the modified CH model. (b) is the simulation
by the original CH model. From left to right, the indicated time is t = 0.01, 0.10, 0.75, and 1.50, respectively. (c) is the interface profiles of the ternary liquid and
ts close-up view. The solid lines show the results of the modified CH model and the dash lines show the results of the original CH model. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
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(23)

here the background velocity field does not change corresponds
o time, i.e., u(x, y, t) = u(x, y, 0) and v(x, y, t) = v(x, y, 0). It has
to be remarked that the two circles should not change the shapes
during the rotation. The results of different mesh grids with the
modified CHmodel at indicated time t = 0, π/40, π/20, 3π/40,
and π/10 are presented in Fig. 4. Fig. 4(a) is the evolution of
the rotate disk under a coincided velocity background fluids with
the modified CH model. Fig. 4(b) shows numerical results with
refined spatial grids and its close-up view. Here we use the
red line, green line and the blue line to represent the results
obtained by the 128 × 128, 256 × 256, and 512 × 512 mesh
grids, respectively. The exact solution is marked as black circle.
From these results, we can see that the convergence under spatial
refinements is evident. Let us define the error and convergence
rate as:{
ehij = φt

hij − φ0
hij,

rh = log2
(
∥eh∥2/∥eh/2∥2

)
,

(24)

where (·)thij represents the value of the point (i, j) at the indicated
time t with spatial step h and ∥ · ∥ is the l -norm. We run this
2 t

198
Table 1
Error and convergence rate of the proposed schemes with various mesh grids.
The temporal step size is fixed as ∆t = 5h2 .
Mesh grid sizes 128 × 128 256 × 256 512 × 512

Original CH model: l2 error 1.912e−4 4.446e−5 1.040e−5
Rate 2.10 2.10

Modified CH model: l2 error 1.615e−4 3.916e−5 9.982e−6
Rate 2.04 1.97

procedure until t = 2π/5 and present the errors and convergent
ates in Table 1. These results suggest that the proposed method
s of second-order spatial accuracy and first-order temporal accu-
acy as expected from the discretization. By comparing the results
f the two models, we can see that our proposed model obtains
ore accurate results.

.4. Droplet deformation under shear flow background

We demonstrate the deformation of a suspended droplet un-
er the influence of shear flow in this section. Fig. 6 (a–c) shows
he temporal evolution of the droplet deformation with the initial
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r
t
d

Fig. 2. The dynamical behaviors of the two kissing circles in triple phase liquids. (a) is the results by the modified CH model. (b) is the results by the original
modified CH model. From left to right, the indicated time is t = 0.02, 0.10, 0.28, and 0.76.
Fig. 3. (a) Numerical polygonal area A(φ) bounded by points pi(x, y)(i = 0, 1, . . . , s − 1), which are located on the 0.5 level of the phase-field and A(φ) =∑s−1
i=0 (xiyi+1 − yixi+1)/2. (b) Time evolution of the normalized polygonal areas for the simulations of Fig. 2.
w

conditions as shown in Fig. 5 (a–c), respectively. For the sake
of clarification, we denote the radius of the small droplet as r
and the radius of the big droplet as R. As shown in Fig. 5(a), the
big droplet of radius R = 0.2 and the small droplet of radius

= 0.15 are positioned at the center of Ω . Due to the surface
ension, fracture appears in Fig. 6(a). As shown in Fig. 5(b), the big
roplet of radius R = 0.2 and the small droplet of radius r = 0.1

are positioned at the center of Ω . It is obvious that the two
droplets deform in the same direction and then in the opposite
direction, gradually stabilize to the initial state. Therefore, the size
difference between the two droplets affects the surface tension of
the interface profile. When the droplet size is small, the surface
tension becomes larger. In order to demonstrate the impact of
the velocity field, we increase the value of background velocity
in the computational domain, which has been shown in Fig. 6(c).
By comparing the deformation of the same composite droplet in
different velocity fields, we can see that the increase of kinetic
energy causes the droplet to break through the surface tension
constraint. However, the composite droplet finally changes into
an ellipse shape under the influence of surface tension, which

corresponds with the physical context. d

199
4.5. Simulation of the falling droplet with two different density ratios

To demonstrate the performance of our modified CH func-
tional in interface capturing, we consider the falling droplet de-
formation with high density ratios in two-dimensional space. The
drop with radius r = 0.1 is positioned at (0.25, 0.75) in the
computational domain Ω = [0, 0.5] × [0, 1] with a 128 × 256
mesh grid. Here we use h = 1/256 and dt = 5h2. For the sake
of clarification, we mark the domain with black, red and white
color as phase 1, phase 2 and phase 3, respectively. The different
densities of the three phases are denoted as ρ1, ρ2 and ρ3. Let us
add a buoyancy term to the NS equation as

ρ(cn)
un+1

− un

∆t
+ ρ(cn) (u · ∇du)n = −∇dpn+1

+
1
Re

∇d · η
(
cn
) [

∇dun
+
(
∇dun)T]

+ SFn +
ρ(c) − ρ1

Fr
g, (25)

here Fr is the Froude number and equals 1 in this section. We
enote g := (0, − 1) as the gravity acceleration and choose the
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Fig. 4. (a) Temporal evolution of the rotate disk under a coincided velocity background fluids flows by the modified CH model. (b) Convergence tests with refined
patial grids and the close-up view. The red line, green line and the blue line represent the results obtained by the 128 × 128, 256 × 256 and 512 × 512 mesh,
espectively. The exact solution is marked as the black circle. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
Fig. 5. Schematic illustration of the initial conditions. (a) R = 0.2 and r = 0.15. (b) R = 0.2 and r = 0.1. (c) R = 0.2 and r = 0.1.
nitial conditions as

u(x, y, 0) = v(x, y, 0) = 0, p(x, y, 0) = 0,
c1(x, y, 0) = 0.5

+ 0.5 tanh
(
(0.1 −

√
(x − 0.25)2 + (y − 0.75)2)/(2

√
2ε)
)
,

c3(x, y, 0) = 0.5 + 0.5 tanh
(
(0.5 − y)/(2

√
2ε)
)
,

c2(x, y, 0) = 1 − c1(x, y, z, 0) − c3(x, y, z, 0).

(26)

e simulate the falling droplet phenomenon under two different
ensity ratio background. In Fig. 7, the density ratio is set as ρ1 :

: ρ = 1 : 10 : 10. The results of the modified CH functional
2 3
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and original CH functional are demonstrated in Fig. 7(a) and
(b), respectively. Since φ2 and φ3 have the same density, the
droplet will not pass through the interface and stay at the middle
between phase 1 and phase 2 eventually. We can see that a few
liquid of phase 1 is squeezed between phase 2 and phase 3 due
to the viscosity and surface tension. Observing the evolution, the
captured interface of the falling droplet is constantly following
the hyperbolic tangent constraints by the modified CH model. As
shown in Fig. 8, the density ratio is ρ1 : ρ2 : ρ3 = 1 : 1 : 10. We
present the results of the modified CH functional in Fig. 8(a) and
the results of the original CH functional in Fig. 8(b). From left to
right, the indicated times are t = 0, 0.2, 0.4, 0.8, 1.0, 1.2, 1.4, and
1.6, respectively. As can be seen, the shape of droplet is changed
because of the joint influence of velocity field and surface tension
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Fig. 6. The dynamical behaviors of the composite droplet under shear flow background liquid until the indicated time t = 0.76. The initial conditions of (a), (b) and
(c) correspond to Fig. 5(a)–(c), respectively.

Fig. 7. The dynamical behaviors of the falling droplet between the two stratified fluids. The color in black (upper half), red (lower half) and white (falling drop)
represent phase 1, 2 and 3, respectively. The density ratio is ρ1 : ρ2 : ρ3 = 1 : 10 : 10. (a) is the results of the modified CH model. (b) is the results of the original
CH model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The dynamical behaviors of the falling droplet between the two stratified fluids. The color in black (upper half), red (lower half) and white (falling droplet)
represent phase 1, 2 and 3, respectively. The density ratio is ρ1 : ρ2 : ρ3 = 1 : 1 : 10. From left to right, the indicated times are t = 0, 0.2, 0.4, 0.8, 1.0, 1.2, 1.4 and
.6, respectively. (a) is the results of the modified CH model. (b) is the results of the original CH model. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Fig. 9. Comparison between the modified CH model and the original CH model with falling droplets. (a) Temporal evolution of the normalized polygonal areas. (b)
emporal evolution of the location of falling droplets.
hen it passes through the interface between phase 1 and phase
. The falling droplet continues to stretch the thread until a pinch
ff of the main droplet occurs eventually due to the Rayleigh–
aylor instability [44]. Comparing the results in Fig. 8(a) and (b),
etter results in preserving the area can be obtained by using the
odified model. We present the line chart of the polygonal areas
f the two models in Fig. 9(a). As can be seen that the proposed
odel reduces the polygonal area loss significantly, while the
riginal CH model does not preserve the area. In Fig. 9(b), we
erform the droplet trajectories by the two models in the same
rame and plot the 0.5-contour line at t = 0, 0.4, 0.8, 1.2, and
202
1.6, respectively. The shapes and locations of the two droplet has
changed with respect to time due to the different surface tension.

4.6. Demonstration of Kelvin–Helmholtz instability with ternary flu-
ids

The Kelvin–Helmholtz(KH) instability occurs between two flu-
ids when there is a sufficiently large velocity difference [45].
By applying a small amplitude perturbed interface between the
ternary fluids, the comparison results of the two models has been
demonstrated in Fig. 10. We plot the 0.5-level contour line to
represent the interface profiles between the ternary liquids. The
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Fig. 10. Comparison of the phase-field with sinusoidal interface perturbations between the modified CH model and the original CH model. The red solid lines and
lack dash lines are the results obtained by the modified CH model and the original CH model, respectively. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
ed solid lines represent the results with the modified CH model
nd the black dash lines represent the results with the original
H model. The initial conditions are considered as

u(x, y, 0) = 1 + tanh
(
(y − 0.66 − 0.02 sin(4πx))/(0.02

√
2)
)

− tanh
(
(y − 0.33 − 0.02 sin(4πx))/(0.02

√
2)
)
,

v(x, y, 0) = 0, p(x, y, 0) = 0,
c1(x, y, 0) = 0.5

+ 0.5 tanh
(
(y − 2/3 − 0.01 sin(4πx))/(2

√
2ε)
)
,

c2(x, y, 0) = 0.5

+ 0.5 tanh
(
(y − 1/3 − 0.01 sin(4πx))/(2

√
2ε)
)

− c1(x, y, 0),
c3(x, y, 0) = 1 − c1(x, y, 0) − c2(x, y, 0).

(27)

Here we use Pe = 0.8/ε, Re = 5000, Fr = 0.8 and the
density ratio ρ1 : ρ2 : ρ3 = 0.8 : 0.9 : 1. We omit the
influence of the surface tension in this test. Fig. 10(a)–(d) are
the results at the indicated time t = 0.1, 0.2, 0.3 and 0.45,
respectively. As can be seen from the comparison, the interfacial
profile satisfy the hyperbolic tangent property with the proposed
model. Meanwhile, the original CH model loss more details during
the interface capturing, while the modified CH model can remain.

5. Conclusion

In this study, an efficient phase-field model was established
for the simulation of multi-component immiscible flows with
interfacial correction in two dimension space. The influence of
surface tension was well examined in the transition region. A
hyperbolic Dirac function was used to smooth the deformation
of interfaces between different phases. The interfacial transition
was captured by a explicit smoothing flow with the modified CH
equations. Furthermore, the enclosed area can be preserved by
the modified CH system. Our scheme can be applied to the incom-
pressible and immiscible fluids coupled system. The discrete sys-
tem was solved by a nonlinear multi-grid method at implicit time
step. We presented various numerical experiments, such as the
evolution of triple junction with prescribed contact angle, shape
relaxation under multi-component liquids background, conver-
gence test with a rotate disk, deformation under shear flow,
simulation of falling droplet and simulation of Kelvin–Helmholtz
instability with ternary fluids, to demonstrate the efficiency and
203
robustness of our scheme. By the comparisons between the re-
sults obtained by the original model and the modified model,
we are convinced that the modification is significant during the
computation of multi-component hydrodynamic system.
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