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a b s t r a c t

This paper aims to establish a novel and efficient topology optimization method for
the thermal-fluid. To adaptively design the fluid–solid coupling structure and make
the objective energy to dissipate, the proposed method considers several constraints,
such as the volume conservation, inlet and outlet flow velocity field and fluid–solid
boundary constraints. The governing system includes the phase-field model, the steady
state Darcy equation and the heat transfer equation. Under the constraints of multiple
physical fields, we prove the existence of minimal solutions to the optimization problem.
We use a Crank–Nicolson (CN) type scheme to discretize the governing system. The
multigrid method is used to solve the resulting system of discrete equations. We prove
the boundedness and unconditional stability of the original energy, which implies that
a large time step can be used. The proposed discrete system is both spatially and
temporally second-order accurate. Various computational tests have been performed
to demonstrate that the numerical approach is efficient in designing the complicated
structures of thermal fluid flows.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Topology optimization [1–5] has been attracting considerable interest in various physical processes, such as shape
ptimization of transport vehicles [6,7], optimal pipe bending structure [8,9] and biomechanical production of artificial
tents [10,11]. Thermal-fluid topology optimization considers the influence of the fluid flow to design the composite
tructure under the limitation of physical constraints, which has gained extensive attention in thermal engineering
pplications [12], such as gas turbine production [13], heat sink device production [14] and 3D printing [15,16]. The
opology optimization of thermal-fluid system in literature can be classified into the following categories: the motion
f fluid flow, the heat conduction and convection and the coupled thermal-fluid problems. Borrvall and Petersson [17]
ntroduced an objective energy with a Brinkman penalization sink term for the momentum equation. By minimizing
he dissipated energy in the fluid, the optimized shape can be obtained. Various extended works such as studies with
ncompressible Navier–Stokes flows [18,19], no-slope-selection thin film and gradient models [20], laminar flows with
inimized pressure drop [21,22], Darcy flows with maximized flow uniformity at the outlet [23,24], have been conducted
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in the last decade. The topology optimization of heat conduction and convection, which involved variation of temperature
between fluid and solid domain based on the thermal interactions, has been proved to offer the optimal structures with
unconventional tree-like shape [25,26]. The studies on the thermal-fluid system coupled with the two categories have been
implemented after the wide applications of the topology optimizations for the heat conduction and fluid flow [27,28].

Topology optimization was originally based on the homogenization theory [29] and now evolved into different
irections, which can be roughly categorized as: density approach, evolutionary approaches, topological derivative, level-
et method and phase-field method. Sigmund and Clausen [30] used the mixed displacement–pressure formulation to
olve the pressure load problem of the topology optimization based on the standard density approach. This method defined
he void phase as a hydrostatic incompressible fluid to transfer the pressure from the external boundary to the internal
tructure, which was independent of the shape or topology. Motivated by this method, various density-based schemes
ere proposed for the applications of the large scale Stokes flow problems [31], turbulent flows problems [32] and steady-
tate fluid–structure interaction problem [33]. Vicente et al. [34] carried out the finite element analysis for the frequency
esponse of a multiphysics system involving fluid–structure interaction. They applied the bi-directional evolutionary
tructural optimization approach to circumvent the problems faced by the density based optimization methods, in which
he acoustic structure interfaces can change their locations during the optimization process. The evolutionary method has
een widely studied in recent years [35–37]. The topological derivative-based method was applied to design the fluid flow
hannel where solid and fluid material was distributed in a porous medium [38–40]. Challis and Guest [41] used the level-
et method for the optimization in Stokes flow. Kreissl and Maute [42] discretized the topology optimization system by the
xtended finite element method and used a level-set method to describe the fluid-solid interface geometry. Additionally,
he level-set equation was needed to be reset in the middle of computation to ensure the continuous update of the
overning partial differential equation (PDE) so that the convergence rate of the optimization program decreases [43].
o overcome these problems, the phase-field method [44,45] has been a recently emerged approach within the field of
opology optimization. Garcke et al. [46] considered the phase field based topology optimization problems and distributed
ome mathematically profound work [47,48], which is concerned with the well-posedness, existence, convergence study
f the phase field based system for solving topological optimization problems. A considerable amount of work based on
hase field model further extended its theoretical and numerical research of topology optimization [49,50]. Furthermore,
uite a few existing works of convergence analysis [51,52] and error estimate [53] for the phase field model coupled with
luid motion were performed to verify the superiority of the phase field method.

In this paper, we will establish an efficient topology optimization system for the thermal-fluid. The computational
ramework is coupled with the time-dependent Allen–Cahn (AC) equation, the incompressible Stokes equation and the
eat transfer (HT) equation, which can be used to simulate the evolution of the interfaces in fluid–solid coupling system.
heoretically we prove the existence of the minimum solution of the optimization problem. The governing system has
een discretized by the Crank–Nicolson (CN) method to have the second-order temporal accuracy. Furthermore, the
icard-iteration method has been applied for the coupled system. The resulting system can be proved to be unconditionally
nergy stable. Several numerical tests will be performed to verify the robust performance of the proposed method.
The contents of this paper are as follows: In Section 2, we briefly introduce the constrained thermodynamic topology

ptimization problem. In Section 3, we provide the detailed description of the proposed Crank–Nicolson-type scheme
ith second-order temporal accuracy and prove the unconditional energy stability of the numerical system. Section 4 is
evoted to present various computation tests. Concluding remarks are given in Section 5.

. Formulation of topology optimization problems

In this section, we introduce the shape optimization problem with thermal-fluid based on a phase-field model. Using
he constraints of the incompressible Stokes equation and convective heat transfer equation, the ultimate optimal shape
an be obtained by the proposed topology optimization scheme.

.1. The description of original optimization problems

We first introduce the original optimization problem by minimizing a certain objective functional with the constraints
f incompressible Stokes equation and convective HT equation. The optimized shapes and fluid-solid domain can be
hosen in a given, fixed Lipschitz domain Ω ⊆ Rm(m = 2, 3). Let ∂Ω denote its boundary and the outer normal vector
or Ω is denoted by n. Let us introduce φ ∈ L1(Ω) as a characteristic function of bounded variation in Ω and denote
(Ω, {0, 1}) as the space of functions of bounded variation in Ω , which can be interpreted as φ = 1(x ∈ Ωf ) and
= 0(x ∈ Ωs). By introduce the Caccioppoli set E ⊂ Ω with φ := χE ∈ V (Ω, {0, 1}), we can use the corresponding

accipppoli setΩf := {φ = 1} to define the fluid subdomain. Furthermore, we denote the solid subdomain asΩs = Ω\Ωf .
he original model for shape optimization can be defined as the minimization of the following functional:

min
Ω

Jori (u, T ) =

∫ (µ
|∇u|

2
− u · f

)
dx +

∫
1
T 2dx + γΓ

(
Ωf
)
, (1)
Ωf 2 Ω 2

2
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T
i

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇p − ∇ · (µ∇u) = f in Ωf ,

∇ · u = 0 in Ωf ,

n · ∇p = 0 on ∂Ωf ,

u = 0 in Ωs,

∇u · n = 0 on ∂Ωf ,

u = g on ∂Ωs,

(2)

{
ρCpTt = ∇ · (K∇T )− ρCpu · ∇T in Ω,
∇T · n = 0 on ∂Ω.

(3)

The objective functional of the fluid topology optimization Eq. (1) is composed of the following parts: The first term is
the compliance energy for the Stokes flow, where µ is the viscosity of the fluid, u is the velocity field and f is the external
force act on the whole of Ω . The second term is the thermal energy, where T is the temperature field. The last term is the
perimeter penalization, where γ is the positive penalized parameter and Γ (Ωf ) is the length of the perimeter of Ωf . This
term is added to overcome the issue of lacking the general existence of minimizer [54]. The notations for the constrained
conditions are denoted as follows: p is the pressure field of the fluid. K , Cp and ρ is the thermal conductivity coefficient,
the thermal capacity and density of the fluid, respectively. It should be emphasized that the velocity field is defined on
the whole of Ω , while in Ωf it is constrained by the Stokes functional and in Ωs we set u = 0.

2.2. The objective functional of the shape optimization problem based on the phase-field model

In this subsection, we will modify the objective functional based on the phase-field model. The non-fluid region has
been replaced by a porous medium with small permeability [17], which implies that we can extend the fluid computing
region(Ωf ) into full the whole computational(Ω). The sharp interface between the solid region(low permeability fluid)
and the fluid region has been replaced by a diffuse interface. The design variable used to distinguish the regions filled
or not filled with fluid is denoted by φ, which is chosen in H1(Ω). We take different values to represent the fluid
domain(φ = 1) and solid domain(φ = 0), respectively. The diffuse interface between fluid and solid denoted by |φ| ≤ 1.
To replace the multiple of perimeter functional γΓ (Ωf ) in the original objective functional Eq. (1), we use the multiple
of Ginzburg–Landau energy [55]

γ E(φ) = γ

∫
Ω

(
ϵ

2
|∇φ|

2
+

1
ϵ
F (φ)

)
dx (4)

where F (φ) = φ2(1 − φ)2/4 is the double well potential. Here γ is considered as the weighting parameter of the
approximation substitution, which forces Eq. (4) to converge as ϵ → 0. The two constrains are equivalent since the
Ginzburg–Landau energy is the approximation of the perimeter functional refer to [56]. Here ϵ is proportional to the
interfacial thickness and ∇ denotes the gradient operator of the computation. Considering that we substitute porous
medium for solid domain, the permeability αϵ(φ) : [0, 1] → [0, α̃ϵ] is defined as a smooth function of φ and the stokes
flow is transformed to Darcy flow as:

αϵ(φ)u − ∇ · (µ∇u) = u (5)

where αϵ(φ) is decreasing, surjective and continuous for ϵ. In this paper, we chose αϵ(φ) = α̃ϵ (1 − φ), which is introduced
for hydrodynamic topology optimization in [57]. Here (α̃ϵ)−1 is the permeability and satisfy α̃ϵ ≥ 0. Considering the
smoothness and well-determined of the porous medium system, we impose that limϵ→0 α̃ϵ < ∞ and α̃ε = o

(
ε−

2
3

)
.

hus, a penalty term
∫
Ω
αϵ(φ)|u|

2/2dx is added to the modified energy, which confirm that the velocity is small enough
n the porous medium(i.e., φ = 0) and satisfies limϵ→0 u = 0. In addition, a volume constrain has be considered in
the modified objective functional to yield an upper bound on the amount of fluid. We use V (φ) :=

∫
Ω
φdx to denote

the volume of the region fulfilling fluid and add the penalty term β (V (φ) − V0)
2 /2 to the modified objective functional,

where V0 is the desired volume. Here β is a positive parameter, which limits the influence of the volume constraint and
can be chosen corresponding to the application. As discussed above, the modified objective function can be summarized
as:

min
Ω

J(φ,u, T ) =

∫
Ω

(µ
2

|∇u|
2
− u · f

)
dx + γ

∫
Ω

(
ϵ

2
|∇φ|

2
+

1
ϵ
F (φ)

)
dx

+

∫
α(φ)

|u|
2dx +

∫
1
T 2dx +

β
(∫

φdx − V0

)2 (6)
Ω 2 Ω 2 2 Ω

3
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subject to⎧⎪⎪⎨⎪⎪⎩
∇p − ∇ · (µ∇u) + αϵ(φ)u = f in Ω,
∇ · u = 0 in Ω,
∇u · n = 0 on ∂Ω,
n · ∇p = 0 on ∂Ω.

(7)

{
ρCpTt − ∇ · (K∇T )+ ρCpu · ∇T = 0 in Ω,
∇T · n = 0 on ∂Ω.

(8)

Some notations should be remarked here: (i) As we replace solid region with porous medium, solid–liquid distinction
is no longer considered in the entire computational domain(i.e., Ωs = ∅, Ωf = Ω), and the original problem has been
converted to a constrained optimization problem of two phase fluids. (ii) The parameters µ, K , ρ and Cp are related to
the phase field function, which can be updated by

µ(φ) = µ1 + (µ2 − µ1) φ, K (φ) = K1 + (K2 − K1) φ,

ρ(φ) = ρ1 + (ρ2 − ρ1) φ, Cp(φ) = C1 + (C2 − C1) φ
(9)

where µi, Ki, ρi and Ci(i=1,2) denotes the constant viscosity, thermal conductivities, density and thermal capacity of the
two phases, respectively. Additionally, we assume that µi, Ki, ρi and Ci are all temperature independent.

Based on the variational derivation, we apply the gradient flow approach. The evolution of the phase-field function
φ(x, t) is governed by:

∂φ

∂t
= −

δJ
δφ

= −
γ

ϵ
F ′(φ) + γ ϵ∆φ −

α′
ϵ(φ)
2

|u|
2
− β (V (φ) − V0) (10)

sing the following variational principle of the objective functional:(
δJ
δφ
,ψ

)
L2

=
d
dη

J(φ + ηψ,u, T )
⏐⏐⏐⏐
η=0

=
γ

ϵ

∫
Ω

(
ψF ′(φ) + ϵ2∇ψ · ∇φ

)
dx +

∫
Ω

ψ

(
α′
ϵ(φ)
2

|u|
2
+ β (V (φ) − V0) V ′(φ)

)
dx

=
γ

ϵ

∫
Ω

(
F ′(φ) − ϵ2∆φ

)
ψdx +

∫
Ω

ψ

(
α′
ϵ(φ)
2

|u|
2
+ β (V (φ) − V0) V ′(φ)

)
dx + γ

∫
∂Ω

ϵ2
∂φ

∂n
ψds

=

∫
Ω

(
γ

ϵ
F ′(φ) −

γ

ϵ
ϵ2∆φ +

α′
ϵ(φ)
2

|u|
2
+ β (V (φ) − V0) V ′(φ)

)
ψdx,

here we use the Neumann boundary condition for the phase variable, i.e., ∇φ · n = 0 and (·)L2 is the L2 norm inner
product. Furthermore, we can obtain the derivation of the proposed equation of the velocity u in the similar way:(

δJ
δu
, v
)

L2

=
d
dη

J(φ,u + ηv, T )
⏐⏐⏐⏐
η=0

=

∫
Ω

(µ∇u · ∇v)dx −

∫
Ω

f · vdx +

∫
Ω

αϵ(φ)u · vdx −

∫
Ω

p∇ · vdx −

∫
∂Ω

n · ∇pds

=

∫
Ω

(
∇p − ∇ · (µ∇u) −

∫
Ω

fdx + αϵ(φ)u
)
vdx,

(11)

which subjects to

δJ
δu

= ∇p − ∇ · (µ∇u) + αϵ(φ)u − f. (12)

erein, we have established the hydrodynamic topology optimization system based on the phase field model. In the
ollowing parts, we will introduce two significant results with the proposed system.

heorem 1. There exists a minimizer (x∗, φ∗,u∗, T ∗) to the optimization problem Eq. (6) with the constrains Eqs. (7)–(8), i.e.,

∃(x∗, φ∗,u∗, T ∗) ∈ Ω ×Φ × U × Ts, s.t. J(x∗, φ∗,u∗, T ∗) ≤ J(x, φ,u, T ), (13)

here φ belongs to Φ ⊂ Rd, u belongs to U ⊂ Rd×d and T belongs to Ts ⊂ Rd. Here U, Φ and Ts are closed and weakly closed
of H1(Ω).
4
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Proof. Without loss of generality, we assume J(x, φ,u, T ) : (Ω,Φ,U, Ts) → R satisfies the Carathéodory condition,
which can be summarized as

• J(x, ·, ·, ·) : R × Rd×d
× R → R is continuous for almost every x ∈ Ω .

• J(·, φ,u, T ) : Ω → R is Lebesgue-measurable for each φ ∈ Rd, u ∈ Rd×d and T ∈ Rd.

ased on the Carathéodory existence theorem, we derive that J has a constant lower bound. Refer to [54], the solution u
nd T are measurable and bounded. Thus we can define a solution operator as

S : Φ → U and S(φ) := u, such that u satisfies the constrain Eq. (7).
G : Φ → Ts and G(u) := T , such that T satisfies the constrain Eq. (8).

(14)

et us choose an admissible sequence limi→+∞(φi,ui, Ti)i∈N → (φ0,u0, T0) ⊂ Φ × U × Ts, particularly, the sequence
atisfies ui = S(φi) and Ti = G(ui) for all i ∈ N . Then we will prove in turn that (i) (φ0,u0, T0) is admissible of Eqs. (6)–(8)
and (ii) the optimization problem J satisfies the weak lower semicontinuous property.

(i) For the fixed v ∈ U, we can obtain that

limi→+∞

∫
Ω

(αϵ (φi) ui − αϵ (φ0) u0) · vdx

=

∫
Ω

(αϵ (φi)ui − αϵ (φi)u0) · vdx +

∫
Ω

(αϵ (φi)u0 − αϵ (φ0)u0) · vdx = 0,

since that⎧⎪⎪⎨⎪⎪⎩
∫
Ω

(αϵ (φi)ui − αϵ (φi)u0) · vdx ≤ α̃ϵ ∥ui − u0∥L2(Ω) ∥v∥L2(Ω) and limi→+∞ ∥ui − u0∥L2(Ω) = 0,

limi→+∞

∫
Ω

(αϵ (φi)u0 − αϵ (φ0)u0) · vdx = limi→+∞

∫
Ω

(αϵ (φi)− αϵ (φ0)) (u0 · v)dx = 0.

Refer to [58], there exists pressure p ∈ L2(Ω) such that u0 = S(φ0) and T0 = G(u0).
(ii) According to the Cauchy sequences of sequence of functions, we obtain that

lim
i→+∞

∫
Ω

F (φi) dx =

∫
Ω

F (φ0) dx,

lim
i→+∞

∫
Ω

|∇ui|
2dx =

∫
Ω

|∇u0|
2dx,

lim
i→+∞

∫
Ω

|∇φi|
2dx =

∫
Ω

|∇φ0|
2dx.

lim
i→+∞

∫
Ω

(T 2
i − T 2

0 )dx = lim
i→+∞

∫
Ω

(Ti + T0)(Ti − T0)dx ≤ 2Tmax∥Ti − T0∥L2(Ω),

where lim
i→+∞

∥Ti − T0∥L2(Ω) = 0 and Ti is bounded by Tmax.

(15)

Therefore, we only need to consider the continuous properties of the strongly coupled term in the objective equation.

lim
i→+∞

∫
Ω

αϵ (φi) |ui|
2 dx −

∫
Ω

αϵ (φ0) |u0|
2 dx

= lim
i→+∞

∫
Ω

αϵ (φi)
(
|ui|

2
− |u0|

2) dx + lim
i→+∞

∫
Ω

(αϵ (φi)− αϵ (φ0)) |u0|
2 dx

≤ lim
i→+∞

α̃ϵ

∫
Ω

|ui − u0| |ui + u0| dx + lim
i→+∞

∫
Ω

(αϵ (φi)− αϵ (φ0)) |u0|
2 dx

≤ lim
i→+∞

α̃ϵ ∥ui + u0∥L2(Ω) ∥ui − u0∥L2(Ω) + lim
i→+∞

∫
Ω

(αϵ (φi)− αϵ (φ0)) |u0|
2 dx = 0. (16)

The combination of Eqs. (15) and Eq. (16) estimates that the objective function of Eq. (6) is lower semicontinuous,
i.e., J(φ0,u0, T0) ≤ lim infi→+∞ J(φi,ui, Ti).

Considering the well-posedness of this system and the lower semi-continuity of the objective function, there are at
least one minimizer (φ ,u , T ) minimize the objective function J . □
0 0 0

5
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Theorem 2. Considering the state functions Eqs. (7) and (8), the solution to the system Eq. (10) forces the modified energy
q. (6) to satisfy the following energy law:

d
dt

J(φ,u, T ) ≤ 0, t ≥ 0. (17)

roof. By taking the inner product of Eq. (7) with u, Eq. (10) with −φ, and Eq. (8) with T , we can obtain the following
nergy dissipation law:

d
dt

J(φ,u, T )

=

∫
Ω

(µ∇u · ∇ut − f · ut) dx + γ

∫
Ω

(
ϵ∇φ · ∇φt +

1
ϵ
F ′(φ)φt

)
dx

+

∫
Ω

(
αϵ(φ)u · ut +

α′
ϵ(φ)
2

|u|
2φt

)
dx +

∫
Ω

TTtdx +

∫
Ω

β (V (φ)− V0) V ′(φ)φtdx

=

∫
Ω

(−∇ · (µ∇u) · ut − f · ut + αϵ(φ)u · ut)+

∫
Ω

TTtdx

+

(
γ

∫
Ω

−ϵ∆φ · φt +
1
ϵ
F ′(φ)φt +

α′
ϵ(φ)
2

|u|
2φt + β (V (φ) − V0) V ′(φ)φt

)
dx

=

∫
Ω

−∇p · utdx −

∫
Ω

φ2
t dx +

1
ρCp

∫
Ω

T∇ · (K∇T )− ρCpKTu · ∇Tdx

= −

∫
Ω

φ2
t dx −

∫
Ω

K
ρCp

|∇T |
2dx ≤ 0,

here we have used the following equations:∫
Ω

−∇p · utdx =

∫
Ω

p∇ · utdx −

∫
∂Ω

put · ndx = −

∫
∂Ω

put · ndx = 0.

his completes the proof. □

. Numerical scheme for the shape optimization problem

Let us introduce the discrete formulation and implementation for the proposed shape optimization problem. The
hermodynamic scheme for topology optimization is discretized in two-dimension domain Ω = [a, b] × [c, d] with a
Nx × Ny mesh grid, where Nx and Ny are even integers and N = NxNy. Then, we denote h = (b − a)/Nx = (d − c)/Ny as
the spatial step. Let us consider the following sets: Em := {i · h | i = 0, . . . ,m}, Cm := {(i − 1/2) · h | i = 1, . . . ,m} and
m̄ := {(i − 1/2) · h | i = 0, . . . ,m + 1}. Then we have the following function spaces:

Cm×n = {φ : Cm × Cn → R} , Cm̄×n̄ = {φ : Cm̄ × Cn̄ → R} ,

Cm̄×n = {φ : Cm̄ × Cn → R} , Cm×n̄ = {φ : Cm × Cn̄ → R} ,

Eew
m×n = {f : Em × Cn → R} , Ens

m×n = {f : Cm × En → R} .
(18)

The staggered marker-and-cell (MAC) mesh is used in which the pressure and indicator function are stored at cell centers
and velocities at cell interfaces. Let us use φn

i,j, u
n
i,j, p

n
i,j and T n

i,j to denote the approximation of φ(xij, n∆t), u(xij, n∆t),
p(xij, n∆t) and T (xij, n∆t), respectively, where ∆t is the temporal step. Let us denote the x-dimension and y-dimension
center-to-edge average operator as Ax : Cm̄×n → Eew

m×n and Ay : Cm×n̄ → Ens
m×n, denote the x-dimension and y-dimension

central difference operators as Dx : Cm̄×n → Eew
m×n and Dy : Cm×n̄ → Ens

m×n, denote the edge-to-center difference operators
as dx : Eew

m×n → Cm×n and dy : Ens
m×n → Cm×n, respectively. Thus we can define the discrete operators before presenting

the second-order numerical scheme.

Axφi+1/2,j =
1
2

(
φi,j + φi+1,j

)
, Dxφi+1/2,j =

1
h

(
φi+1,j − φi,j

)
,

Ayφi,j+1/2 =
1
2

(
φi,j + φi,j+1

)
, Dyφi,j+1/2 =

1
h

(
φi,j+1 − φi,j

)
,

dxφi,j =
1
h

(
φi+1/2,j − φi−1/2,j

)
, dyφi,j =

1
h

(
φi,j+1/2 − φi,j−1/2

)
,

∆dφi,j = dx(Dxφ)ij + dy(Dyφ)ij =
(
φi−1,j + φi,j−1 − 4φi,j + φi,j+1 + φi+1,j

)
/h2,

(φ,ψ)d =

Nx∑ Ny∑
φi,jψi,j, Ad(φ) = h2

Nx∑ Ny∑
φij, ∥φ∥

2
2 = h2(φ, φ)d,
i=1 j=1 i=1 j=1

6
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R
G

3

p

g

(u, v)ew =
1
2

m∑
i=1

n∑
j=1

(
ui+1/2,jvi+1/2,j + ui−1/2,jvi−1/2,j

)
,

(u, v)ns =
1
2

m∑
i=1

n∑
j=1

(
ui,j+1/2vi,j+1/2 + ui,j−1/2vi,j−1/2

)
,

∥∇dφ∥
2
2 = h2 (Dxφ,Dxφ)ew + h2 (Dyφ,Dyφ

)
ns ,

∥u∥
2
2 = h2 (u, u)ew + h2 (v, v)ns ,

∥∇du∥
2
2 = h2 (Dxu,Dxu)ew + h2 (Dyu,Dyu

)
ew + h2 (Dxv,Dxv)ns + h2 (Dyv,Dyv

)
ns . (19)

efer to [59,60], we can fine that the above weighted inner products satisfy the discrete Green’s first identity and the
reen’s second identity.

.1. Second-order accuracy scheme for the constrained formulation

In this section, we present a second-order numerical scheme for the thermal-fluid-based topology optimization
roblem with the constrained function Eqs. (7) and (8).

φn+1
− φn

∆t
= −

γ

ϵ

(
F ′

(
φ̃n+ 1

2

)
+ ξφn+ 1

2 − ξ φ̃n+ 1
2

)
+ γ ϵ

(
dx
(
Dxφ

n+ 1
2

)
+ dy

(
Dyφ

n+ 1
2

))
,

+
α̃ϵ

2
|un

|
2
+ |un+1

|
2

2
− β

(
V (φn)+ V

(
φn+1

)
2

− V0

)
, (20a)

Dxpn+
1
2 −

(
dx
(
µn+ 1

2 Dxun+ 1
2

)
+ dy

(
µn+ 1

2 Dyun+ 1
2

))
+
αϵ (φ

n)+ αϵ
(
φn+1

)
2

un+ 1
2 = fx,n+

1
2 , (20b)

Dypn+
1
2 −

(
dx
(
µn+ 1

2 Dxv
n+ 1

2

)
+ dy

(
µn+ 1

2 Dyv
n+ 1

2

))
+
αϵ (φ

n)+ αϵ
(
φn+1

)
2

vn+
1
2 = fy,n+

1
2 , (20c)

dxun+1
+ dyvn+1

= 0, (20d)
T n+1

− T n

∆t
−

1

ρn+ 1
2 C

n+ 1
2

p

(
dxK n+ 1

2 DxT n+ 1
2 + dyK n+ 1

2 DyT n+ 1
2

)
+ un+ 1

2 DxT n+ 1
2 + vn+

1
2 DyT n+ 1

2 = 0, (20e)

where φn+ 1
2 = (φn+1

+ φn)/2, φ̃n+ 1
2 = (3φn

− φn−1)/2, µn+ 1
2 = (µn

+ µn+1)/2, un+ 1
2 = (un+1

+ un)/2, fx,n+
1
2 =

(fx,n+1
+ fx,n)/2, fy,n+

1
2 = (fy,n+1

+ fy,n)/2, K n+ 1
2 = (K n

+ K n+1)/2, ρn+ 1
2 = (ρn

+ ρn+1)/2, C
n+ 1

2
p = (Cn

p + Cn+1
p )/2 and

T n+ 1
2 = (T n

+ T n+1)/2. We apply the following weighted inner products to deal with the boundary conditions as:

(f , g)ew = − (1/h)
Ny∑
j=1

g1/2,jf1/2,j + (1/h)
ny∑
j=1

gnx+1/2,jfnx+1/2,j, if f , g ∈ Eew
m×n

(f , g)ns = − (1/h)
nx∑
i=1

gi,1/2fi,1/2 + (1/h)
nx∑
i=1

gi,ny+1/2fi,ny+1/2, if f , g ∈ Ens
m×n.

(21)

Then, we give the computational solutions of the proposed optimization system. Because the phase motion is coupled
with the velocity field evolution, it is important to solve the Darcy equation and HT equation in a temporally matched
manner. Here, ξ is a stabilizing parameter and satisfies ξ ≥ max(F ′′(φ)) = F ′′(M), where M is the maximum of φ.

Remark 1. We should point out that we restrict our attention to the order parameter φ which is bounded. The original
Allen–Cahn(AC) equation satisfies the maximum principle refer to the existing discussions [61,62] on the maximum
principle of φ. Our proposed hydrodynamic system is based on a modified AC equation, which may conserve the maximum
principle. In addition, the double-well potential F (φ) restricted the growth of φ to be quadratic and return φ to the normal
range. Although we cannot analytically prove φ is bounded in Eq. (20a) since u is coupled to φ and F (φ) exhibits quartic
rowth at infinity, our numerical experiments confirm that φ is bounded if the initial condition is set as φ0

∈ [0, 1]. Thus,
we assume that there exists M, which is non-significantly larger than 1 and satisfies |φ| <M.
7
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S

w

S

T

w

S

S

For the given initial φn, un and T n, we compute φn+1, un+1 and T n+1 by integrating the following steps:

tep 1. Update the phase φn+1 with Eq. (20a) as

φn+1,q+1
− φn

∆t
= −

γ

ϵ

(
F ′

(
φ̃n+ 1

2

)
+
ξ

2

(
φn+1,q+1

+ φn)
− ξ φ̃n+ 1

2

)
+ γ ϵ

(
dx
(
Dx
(
φn+1,q+1

+ φn))
+ dy

(
Dy
(
φn+1,q+1

+ φn)))
+
α̃ϵ

2
|un

|
2
+ |un+1

|
2

2
− β

(
Vd (φ

n)+ Vd
(
φn+1,q

)
2

− V0

)
, (22)

here q is the index of Picard iteration and we apply the procedure until
φn+1,q+1

− φn+1,q
2
d ≤ tol.

tep 2. Take the divergence operator to both sides of Eq. (20b) and update the pressure pn+1 as:

dx
(
Dxpn+

1
2

)
+ dy

(
Dypn+

1
2

)
= dxfx,n+

1
2 + dyfy,n+

1
2

−
1
4

(
dx
((
un

+ un+1,m) Ax
(
αϵ
(
φn)

+ αϵ
(
φn+1)))

+ dy
((
vn + vn+1,m) Ay

(
αϵ
(
φn)

+ αϵ
(
φn+1)))) .

Update the velocity field un+1 with Eq. (20b) as:

µn+ 1
2

(
dx(Dxun+ 1

2 ) + dy(Dyv
n+ 1

2 )
)

−
αϵ (φ

n)+ αϵ
(
φn+1

)
2

un+ 1
2 = Dxpn+

1
2 − fx,n+

1
2 ,

µn+ 1
2

(
dx(Dxun+ 1

2 ) + dy(Dyv
n+ 1

2 )
)

−
αϵ (φ

n)+ αϵ
(
φn+1

)
2

vn+
1
2 = Dypn+

1
2 − fy,n+

1
2 .

(23)

o obtain the solution of the pressure and velocity field, we employ a Picard iteration as follows:

dx
(
Dxpn+1,m+1

)
+ dy

(
Dypn+1,m+1

)
+ dx

(
Dxpn

)
+ dy

(
Dypn

)
= 2dxfx,n+

1
2 + 2dyfy,n+

1
2

−
1
2

(
dx
((

un
+ un+1,m) Ax

(
αϵ
(
φn)

+ αϵ
(
φn+1)))

+ dy
((
vn + vn+1,m) Ay

(
αϵ
(
φn)

+ αϵ
(
φn+1)))),

µn+ 1
2

2

(
dx
(
Dxun+1,m+1)

+ dy
(
Dyun+1,m+1))

−
αϵ(φn) + αϵ(φn+1)

2
un+1,m+1

2

=
Dxpn+1,m+1

+ Dxpn

2
+
αϵ(φn) + αϵ(φn+1)

2
un

2
− fx,n+

1
2 −

µn+ 1
2

2

(
dx
(
Dxun)

+ dy
(
Dyun)),

µn+ 1
2

2

(
dx
(
Dxv

n+1,m+1)
+ dy

(
Dyv

n+1,m+1))
−
αϵ(φn) + αϵ(φn+1)

2
vn+1,m+1

2

=
Dypn+1,m+1

+ Dypn

2
+
αϵ(φn) + αϵ(φn+1)

2
vn

2
− fy,n+

1
2 −

µn+ 1
2

2

(
dx
(
Dxv

n)
+ dy

(
Dyv

n)),
here m is the index of Picard iteration and we compute untilpn+1,m+1

− pn+1,m
2
2 +

un+1,m+1
− un+1,m

2
2 ≤ tol. (24)

tep 3. Update the temperature field with Eq. (20e) as:

T n+1
− T n

∆t
+ un+ 1

2 DxT n+ 1
2 + vn+

1
2 DyT n+ 1

2 =
1

ρn+ 1
2 C

n+ 1
2

p

(
dxK n+ 1

2 DxT n+ 1
2 + dyK n+ 1

2 DyT n+ 1
2

)
. (25)

ome notations should be pointed here: (i) We use two level values, i.e., φ−1, φ0, u−1, u0, T−1 and T 0, to initialize the
computation. Let us set φ−1

:= φ0, u−1
:= u0 and T−1

:= T 0, which will not reduce the accuracy of the numerical
scheme. (ii) V (φn+1) in nonlinear with respect to φn+1 in Eq. (20a) by taking the inner product of Eq. (20a) with 1 and
using the definition of V (φ). Thus the Picard iterations is needed to makes the original nonlinear problem become a linear
solvable problem. (iii) There are also other efficient algorithms, such as Newton’s method and conjugate gradient method,
to solve the proposed model. In order to match the theoretical proof of energy dissipation, we adopt the above algorithm.
(iv) The central difference scheme is used for spatial discretization and the Crank–Nicolson type scheme is used for
temporal discretization, which are both second-order accurate. We will not prove but imply a numerical test to verify
that our algorithm conforms to second-order accuracy.
8
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3.2. Unconditional stability for the numerical scheme

In this subsection, we demonstrate the unconditional stability of the proposed scheme Eq. (20). Let us define the
odified energy as

J̃d
(
φn+1, φn,un+1, T n+1)

= Jd
(
φn+1,un+1, T n+1)

+
ξ − F ′′

(
σ n,n+1

)
4ϵ

γ
φn+1

− φn
2
2 ,

(26)

here the total energy is defined as

Jd
(
φn,un, T n)

=
µn+ 1

2

2
∥∇dun

∥
2
2 −

(
un, fn

)
d + γ

(
ϵ

2
∥∇dφ

n
∥
2
2 +

1
ϵ

(
F
(
φn) , 1)d)

+
α(φn)

2
∥un

∥
2
2 +

∥T n
∥
2
2

2
+
β

2

(
V
(
φn)

− V0, V
(
φn)

− V0
)
d

(27)

nd σ n,n+1 satisfies the following functional:(
F ′(φ̃n+ 1

2 ), φn+1
− φn

)
d

=
(
F (φn+1) − F (φn), 1

)
d

−
F ′′
(
σ n,n+1

)
4

(φn+1
− φn

2
2 −

φn
− φn−1

2
2 +

φn+1
− 2φn

+ φn−1
2
2

)
.

(28)

Theorem 3. If ξ ≥ F ′′(M), the solutions of Eq. (20) make the modified energy decay with respect to time:

J̃d(φn+1, φn,un+1, T n+1) − J̃d(φn, φn−1,un, T n)

= −
1
∆t

φn+1
− φn

2
2 −∆tK n+ 1

2

∇dT n+ 1
2

2
2
−
ξ − F ′′

(
σ n+1,n

)
4ϵ

γ
φn+1

− 2φn
+ φn−1

2
2 ≤ 0.

(29)

roof. By multiplying Eq. (20b) with un+1
− un and Eq. (20c) with vn+1

− vn, we can obtain the following function:

µn+ 1
2

2

(
(Dxun+1,Dxun+1)ew + (Dyun+1,Dyun+1)ew − (Dxun,Dxun)ew − (Dyun,Dyun)ew

)
+

1
2

(
αϵ(φn+1)un+1, un+1)

ew −
1
2

(
αϵ(φn)un, un)

ew −
(
fx,n+1, un+1)

ew +
(
fx,n, un)

ew

=
1
4

(
αϵ(φn+1) − αϵ(φn), (un+1, un+1)ew + (un, un)ew

)
ew , (30a)

and

µn+ 1
2

2

(
(Dxv

n+1,Dxv
n+1)ns + (Dyv

n+1,Dyv
n+1)ns − (Dxv

n,Dxv
n)ns − (Dyv

n,Dyv
n)ns

)
+

1
2

(
αϵ(φn+1)vn+1, vn+1)

ns −
1
2

(
αϵ(φn)vn, vn

)
ns −

(
fy,n+1, vn+1)

ns +
(
fy,n, vn

)
ns

=
1
4

(
αϵ(φn+1) − αϵ

(
φn) , (vn+1, vn+1)ns + (vn, vn)ns

)
ns . (30b)

y taking the inner product with Eq. (20a) and −(φn+1
− φn), we obtain the following equation:

−
1
∆t

(φn+1
− φn, φn+1

− φn)d

=
γ

ϵ

(
F ′(φ̃n+ 1

2 ), φn+1
− φn

)
d
+
ξγ

ϵ

(
φn+ 1

2 − φ̃n+ 1
2 , φn+1

− φn
)
d

− ϵγ

(
dx
(
Dxφ

n+ 1
2

)
, φn+1

− φn
)
ew

− ϵγ

(
+dy(Dyφ

n+ 1
2 ), φn+1

− φn
)
ns

+

(
α′
ϵ (φ

n)+ α′
ϵ

(
φn+1

)
4

|un
|
2
+ |un+1

|
2

2
, φn+1

− φn

)
d

+
β

2

(
Vd(φn+1) + Vd(φn) − 2V0, φ

n+1
− φn)

d (31)

=
γ (

F ′(φ̃n+ 1
2 ), φn+1

− φn
)

+
ξγ (

(φn+1
− φn, φn+1

− φn)d −
(
φn

− φn−1, φn
− φn−1)
ϵ d 4ϵ d

9
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+(φn+1
− 2φn

+ φn−1, φn+1
− 2φn

+ φn−1)d
)
+
γ ϵ

2
(Dxφ

n+1,Dxφ
n+1)ew +

γ ϵ

2
(Dyφ

n+1,Dyφ
n+1)ns

−
γ ϵ

2

(
Dxφ

n,Dxφ
n)

ew −
γ ϵ

2

(
Dyφ

n,Dyφ
n)

ns −

(
αϵ
(
φn+1)

− αϵ
(
φn) , |un

|
2
+ |un+1

|
2

4

)
d

+
β

2

(
Vd
(
φn+1)

− V0, Vd
(
φn+1)

− V0
)
d −

β

2

(
Vd(φn) − V0, Vd

(
φn)

− V0
)
d .

By taking the inner product with Eq. (20e) and T n+ 1
2 /

(
ρn+ 1

2 C
n+ 1

2
p

)
, we can obtain the following:

1
2∆t

(
T n+1

− T n, T n+1
+ T n)

d

= −

(
un+ 1

2 DxT n+ 1
2 , T n+ 1

2

)
ew

−

(
vn+

1
2 DyT n+ 1

2 , T n+ 1
2

)
ns

+
1

ρn+ 1
2 C

n+ 1
2

p

(
(dx(K n+ 1

2 DxT n+ 1
2 ), T n+ 1

2 )ew + (dy(K n+ 1
2 DyT n+ 1

2 ), T n+ 1
2 )ns

)
(32)

= −

(
un+ 1

2 DxT n+ 1
2 , T n+ 1

2

)
ew

−

(
vn+

1
2 DyT n+ 1

2 , T n+ 1
2

)
ns

−
1

ρn+ 1
2 C

n+ 1
2

p

(
(K n+ 1

2 DxT n+ 1
2 ,DxT n+ 1

2 )ew + (K n+ 1
2 DyT n+ 1

2 ,DyT n+ 1
2 )ns

)
,

Since that
(
un+ 1

2 DxT n+ 1
2 + vn+

1
2 DyT n+ 1

2 , T n+ 1
2

)
d

= 0 has been proved in [63], thus

1
2

(
T n+1

− T n, T n+1
+ T n)

d = −
∆tK n+ 1

2

ρn+ 1
2 C

n+ 1
2

p

(
(DxT n+ 1

2 ,DxT n+ 1
2 )ew + (DyT n+ 1

2 ,DyT n+ 1
2 )ns

)
.

Considering the term F
(
φn+1

)
− F (φn) with the Taylor expansion as:(

F (φn+1) − F (φn), 1
)
d

=
(
F (φn+1), 1

)
d −

(
F (φ̃n+ 1

2 ), 1
)
d
+

(
F (φ̃n+ 1

2 ), 1
)
d
−
(
F (φn), 1

)
d

=

(
F ′(φ̃n+ 1

2 ), φn+1
− φ̃n+ 1

2

)
d
+

(
F ′′
(
ζ n+1
1

)
2

(
φn+1

− φ̃n+ 1
2

)
, φn+1

− φ̃n+ 1
2

)
d

(33)

−

(
F ′(φ̃n+ 1

2 ), φn
− φ̃n+ 1

2

)
d
−

(
F ′′
(
ζ n2
)

2
(φn

− φ̃n+ 1
2 ), φn

− φ̃n+ 1
2

)
d

=

(
F ′(φ̃n+ 1

2 ), φn+1
− φn

)
d
+

F ′′
(
σ n+1,n

)
4

((
φn

− φn−1, φn
− φn−1)

d −
(
φn+1

− φn, φn+1
− φn)

d

−
(
φn+1

− 2φn
+ φn−1, φn+1

− 2φn
+ φn−1)

d

)
,

where the three constants ζ n+1
1 , ζ n2 , and σ

n+1,n can be obtained based on the Cauchy’s mean value theorem [64]. Thus,
we obtain the energy dissipation by multiplying the above equation with h2/2 and summing them as:

J̃d
(
φn+1, φn,un+1, T n+1)

− J̃d
(
φn, φn−1,un, T n)

=
µn+ 1

2

2

(∇dun+1
2
2 −

∇dun
2
2

)
−
(
un+1

− un, f
)
d +

γ ϵ

2

(∇φn+1
2
2 −

∇φn
2
2

)
+
γ

ϵ

(
F
(
φn+1)

− F
(
φn) , 1)d +

αϵ
(
φn+1

)
2

un+1
2
2 −

αϵ (φ
n)

2

un
2
2

+
1
2

(T n+1
2
2 −

T n
2
2

)
+
β

2

((
V
(
φn+1)

− V0
)2

−
(
V
(
φn)

− V0
)2
, 1
)
d

+
ζ − F ′′

(
σ n+1,n

)
4ϵ

γ

(φn+1
− φn

2
2 −

φn
− φn−1

2
2

)
=
µn+ 1

2 h2

2

(
(Dxun+1,Dxun+1)ew + (Dyun+1,Dyun+1)ew + (Dxv

n+1,Dxv
n+1)ns + (Dyv

n+1,Dyv
n+1)ns

−
(
D un,D un)

−
(
D un,D un)

−
(
D vn,D vn

)
−
(
D vn,D vn

) )

x x ew y y ew x x ns y y ns

10
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−

(
un+1

− un, fx,n+
1
2

)
ew

−

(
vn+1

− vn, fy,n+
1
2

)
ns

+
γ ϵh2

2

(
(Dxφ

n+1,Dxφ
n+1)ew + (Dyφ

n+1,Dyφ
n+1)ns

−
(
Dxφ

n,Dxφ
n)

ew −
(
Dyφ

n,Dyφ
n)

ns

)
+
γ

ϵ

(
F (φn+1) − F

(
φn) , 1)d

+
αϵ
(
φn+1

)
h2

2

(
(un+1, un+1)ew + (vn+1, vn+1)ns

)
−
αϵ (φ

n) h2

2

(
(un, un)ew + (vn, vn)ns

)
+

h2

2

(
(T n+1, T n+1)d −

(
T n, T n)

d

)
+
β

2

((
V
(
φn+1)

− V0
)2

−
(
V
(
φn)

− V0
)2
, 1
)
d

+
ζ − F ′′

(
σ n+1,n

)
4ϵ

γ
(
h2(φn+1

− φn, φn+1
− φn)d − h2(φn

− φn−1, φn
− φn−1)d

)
=
αϵ
(
φn+1

)
− αϵ (φ

n)

4
h2 ((un+1, un+1)ew +

(
vn+1, vn+1)

ns

)
+
αϵ
(
φn+1

)
− αϵ (φ

n)

4
h2
(
(un, un)ew +

(
vn, vn

)
ns

)
+
γ ϵh2

2

(
(Dxφ

n+1,Dxφ
n+1)ew + (Dyφ

n+1,Dyφ
n+1)ns − (Dxφ

n,Dxφ
n)ew − (Dyφ

n,Dyφ
n)ns

)
+
γ

ϵ

(
F (φn+1) − F (φn), 1

)
d +

β

2

((
V
(
φn+1)

− V0
)2

−
(
V
(
φn)

− V0
)2
, 1
)
d

+
h2

2

(
T n+1

− T n, T n+1
+ T n)

d

+
ζ − F ′′

(
σ n+1,n

)
4ϵ

γ

(
h2 (φn+1

− φn, φn+1
− φn)

d − h2 (φn
− φn−1, φn

− φn−1)
d

)
= −

h2

∆t

(
φn+1

− φn, φn+1
− φn)

d −
γ

ϵ

(
F ′(φ̃n+ 1

2 ), φn+1
− φn

)
d

−
ξγ h2

4ϵ

(
(φn+1

− φn, φn+1
− φn)d −

(
φn

− φn−1, φn
− φn−1)

d

+(φn+1
− 2φn

+ φn−1, φn+1
− 2φn

+ φn−1)d
)
+
γ

ϵ

(
F (φn+1) − F

(
φn) , 1)d

−
∆tK n+ 1

2 h2

ρn+ 1
2 C

n+ 1
2

p

(
(DxT n+ 1

2 ,DxT n+ 1
2 )ew + (DyT n+ 1

2 ,DyT n+ 1
2 )ns

)
+
ζ − F ′′

(
σ n+1,n

)
4ϵ

γ
(
h2(φn+1

− φn, φn+1
− φn)d − h2 (φn

− φn−1, φn
− φn−1)

d

)
= −

1
∆t

φn+1
− φn

2
d −

γ

ϵ

(
F ′(φ̃n+ 1

2 ), φn+1
− φn

)
d
+
γ

ϵ

(
F
(
φn+1)

− F
(
φn) , 1)d

−
∆tK n+ 1

2

ρn+ 1
2 C

n+ 1
2

p

∇dT n+ 1
2

2
2
−
ξ − F ′′

(
σ n+1,n

)
4ϵ

γ
φn+1

− 2φn
+ φn−1

2
2

= −
1
∆t

φn+1
− φn

2
2 −

∆tK n+ 1
2

ρn+ 1
2 C

n+ 1
2

p

∇dT n+ 1
2

2
2
−
ξ − F ′′

(
σ n+1,n

)
4ϵ

γ
φn+1

− 2φn
+ φn−1

2
2 ≤ 0,

which corresponds to Eq. (29). □

Remark 2. We should remark that the present framework with the modified energy convergences to the original
optimization problem. Although we cannot prove that the original energy is unconditional decreasing, we can see that

the original energy is bounded by the modified energy, i.e., Jd (φn,un, T n) ≤ Jd (φn,un, T n)+
ξ−F ′′

(
σn,n+1

)
4ϵ γ

φn+1
− φn

2
d if

ξ ≥ F ′′(M). Let us denote {φn,un, T n} as the solution of Eqs. (20) in a iteration, which starts with initial values
{
φ0,u0, T 0

}
and

{
φ−1,u−1, T−1

}
. Here φ−1

= φ0, u−1
= u0 and T−1

= T 0. With the assumption ξ ≥ F ′′(M), the following inequality
can be obtained:

Jd
(
φn+1,un+1, T n+1)

− J̃d
(
φn+1, φn,un+1, T n+1)

= −
ξ − F ′′

(
σ n,n+1

)
γ
φn+1

− φn
2 ≤ 0,
4ϵ 2
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Fig. 1. Temporal evolution of (a) the discrete modified and original energies using the proposed scheme and (b) the maximum and minimum value
f φ.

hich implies that

Jd
(
φn+1,un+1, T n+1)

≤ J̃d
(
φn+1, φn,un+1, T n+1)

≤ · · · ≤ J̃d
(
φ0, φ−1,u0, T 0)

= Jd
(
φ0,u0, T 0) .

Thus, the original discrete energy is bounded by the modified energy, which is indeed non-increasing with respect to
time. Despite it is difficult to prove that the original optimization problem (Eqs. (6)–(8)) satisfies a energy dissipation
law, the results of the numerical tests presented in Section 4 indicate that the original energy J(φ,u) is non-increasing.

4. Numerical results

We present computational tests to demonstrate the efficiency of the proposed method. Unless otherwise specified, we
will choose the computational domain as Ω = [0, 10]×[0, 10] with a 512 × 512 mesh grid. The following parameters for
the numerical simulations are chosen as: µ1 : µ2 = C1 : C2 = K1 : K2 = 1 : 1, ϵ = 4h/(4

√
2atanh(0.9)), α̃ϵ = 10, β = 10,

= 0.5, ξ = 0.5 and ∆t = 0.5h. The external force f = (10, 0) is imposed in the local circular region with center [5, 5]
nd radius r = 1. We use the Dirichlet boundary condition for the phase-field φ, the velocity field u and the temperature
ield T . The Neumann boundary condition is used for the pressure field p.

.1. Non-increasing discrete energy test

To demonstrate the energy decrease, we study the temporal evolution of the scaled discrete energy Jd(φn)/Jd(φ0). We
apply the numerical test of the design of rugby in the computational domain Ω = [0, 15] × [0, 10] with a 768 × 512
mesh grid. The initial conditions are chosen as follows:⎧⎪⎨⎪⎩

φ(x, y, 0) = 0.5 − 0.5 tanh
(
−max

(
|x − 5| − 2, |y − 5| − 2

)
/
(√

2ϵ
))
,

u (x, y, 0) = (5φ (x, y, 0) , 0),
T (x, y, 0) = T0φ (x, y, 0) .

(36)

Here we choose the non-default parameters as follows: T0 = 20, γ = 0.01 and V0 = 16. The inset figures are the
morphology of the phase field at the indicated times. The velocity fields during the evolution process are presented on the
sub-figures. The modified energy and the original energy have been normalized by the initial energy. The results of shown
in Fig. 1(a) suggest that the fluid goes from left to right away from the obstacle and the solid shape becomes an ellipse.
Furthermore, we can observe that the modified energy dissipates during the evolution. We also can find that the original
discrete energy is bounded by the modified energy and non-increasing. Furthermore, we have shown in Fig. 1(b) that the
value of φ is essentially bounded. The slight deviation of φ from the value range is caused by α′

ϵ(φ)|u|
2/2. However, since

the double-well potential F (φ) restricted the growth of φ to be quadratic, φ is boundedness.

4.2. Convergence test

We implement two computational tests of the temporal and spatial truncation errors to demonstrate the convergence
of our scheme. Because the governing equations have no closed-form analytical solution, we use the numerical solution
obtained by very fine grid indexes as the reference solution φref. We consider the initial conditions and parameters setting
as Eq. (36). To compute the convergence rate for the temporal discretization with the fixed h = 1/512, we choose the
set of decreasing time steps as ∆t = 3.2e − 4, ∆t = 1.6e − 4 and ∆t = 8e − 5. The reference solution is assumed to be
12
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Table 1
Errors and convergence rates with different time steps for velocity field u and v, phase field φ and temperature field T .
∆t Error Order

u v φ T u v φ T

3.2e − 4 6.638e − 02 1.621e − 03 1.216e − 02 4.075e − 02 – – – –
1.6e − 4 1.508e − 02 3.389e − 04 3.102e − 03 9.297e − 03 2.14 2.25 1.97 2.13
8e − 5 3.532e − 03 8.586e − 05 7.821e − 04 2.444e − 03 2.09 1.98 1.99 1.93

Table 2
Errors and convergence rates with different space steps for velocity field u and v, phase field φ and temperature field T .
N Error Order

u v φ T u v φ T

64 2.465e − 03 2.623e − 04 9.258e − 04 7.312e − 03 – – – –
128 6.554e − 04 6.912e − 05 2.205e − 04 1.808e − 03 1.91 1.94 2.07 2.02
256 1.345e − 04 1.808e − 05 5.131e − 05 4.171e − 04 2.28 1.94 2.10 2.12

obtained of temporal step ∆t = 2e − 5. Here, the error is defined as ei,∆t := φi,∆t − φref
i . Let log2(∥ei,∆t∥2/∥ei,∆t/2∥2) be

the rate of convergence. The errors and the rates of the convergence have been presented in Table 1. As can be seen, the
proposed method is indeed second-order accuracy in time, which is expected from the discrete scheme Eq. (20).

To demonstrate the convergence rate for the spatial discretization with the fixed temporal step size ∆t = 2e− 5 until
t = 0.1, we use the set of decreasing spatial steps as h = 1/64, h = 1/128 and h = 1/256. Here, the error is defined as
ei,h := φi,h − φref

i . Let log2(∥ei,h∥2/∥ei,h/2∥2) be the rate of convergence. The reference solution is assumed to be obtained
with a very fine space grid size h = 1/512. The results are shown in Table 2. As can be seen from the results, our method
is indeed second-order accuracy with respect to space.

Comparing to the direct solution of the optimization problem, the benefits of our proposed method should be remarked
here: (i) Our algorithm is second-order accurate, which implies that our method uses fewer iterative steps than the general
direct optimization algorithm. (ii) Our algorithm can ensure the energy dissipation law, which means that it will not fall
into local extreme points and get pseudo convergence.

4.3. Presentation of various classical shape optimization problems

In this subsection, we demonstrate several classical cases, such as the personalized design of the diffuser, growing
evolution of the pip bend and the arterial bypass design. The initial conditions are set as

φ1 (x, y, 0) =

⎧⎨⎩
1, if x = 0 and 10/3 ≤ y ≤ 20/3,
1, if x = 10 and 10/3 ≤ y ≤ 20/3,
rand(x, y), otherwise,

φ2 (x, y, 0) =

⎧⎨⎩
1, if x = 0 and 7 ≤ y ≤ 9,
1, if x = 10 and 1 ≤ y ≤ 3,
rand(x, y), otherwise,

φ3 (x, y, 0) =

⎧⎨⎩
1, if y = 0 and 1 ≤ x ≤ 3,
1, if y = 0 and 7 ≤ x ≤ 9,
rand(x, y), otherwise.

The initial velocity field for the three examples are chosen as

u1 (x, y, 0) =

⎧⎨⎩
(0.5y (10 − y) , 0) , if x = 0 and 10/3 ≤ y ≤ 20/3,
(6.75 (y − 10/3) (20/3 − y) , 0) , if x = 10 and 10/3 ≤ y ≤ 20/3,
(0, 0) , otherwise,

u2 (x, y, 0) =

⎧⎨⎩
((y − 7) (9 − y) , 0) , if x = 0 and 7 ≤ y ≤ 9,
((y − 1) (3 − y) , 0) , if x = 10 and 1 ≤ y ≤ 3,
(0, 0) , otherwise,

u3 (x, y, 0) =

⎧⎨⎩
(0, (x − 1) (3 − x)) , if y = 0 and 1 ≤ x ≤ 3,
(0, (x − 7) (x − 9)) , if y = 0 and 7 ≤ x ≤ 9,
(0, 0) , otherwise.

The initial temperature of the three examples are chosen as

T1(x, y, 0) = rand(x, y), T2(x, y, 0) = rand(x, y), T3(x, y, 0) = rand(x, y),

where rand(x, y) is a random number between 0 and 1. In our computations, the prescribed volume fraction for the three
examples are chosen as V = 50. The top row is the schematic illustration of inflow and outflow, the middle row is
0

13
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Fig. 2. Three classical shape optimization problems. (a) is the diffuser design, (b) is the curved pip design and (c) is the arterial bypass design. The
top row is the illustration of the initial conditions, the middle row is the results of the phase-field evolution and the bottom row is the temperature
field by the proposed method.

the phase-field results of topology optimization and the bottom row is the temperature field of the three examples. To
show the temperature changes resulting from the optimization, we assume that the temperature of the fluid is constant
and the heat is continuously diffused outward. From Fig. 2(a) to 2(c), the sub-figures show the results of the diffuser,
pipe and bypass, respectively. According to these results, it can be seen that the fluid flow drives the deformation of the
boundary between the fluid domain and the solid domain, thus the optimized shape is finally formed under the interaction
between the fluid and the solid. The bottom row shows the results of heat diffusion with the thermal-fluid of constant
temperature. As can be seen from the results in Fig. 3, the evolution of the objective results dissipate. It is worth pointing
out that the final optimization result is independent on the initial condition of the phase field. In other words, we can set
an initial value condition that is approximate to the optimized target shape to shorten the iterative process and accelerate
convergence.
14
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Fig. 3. Energy dissipation of the three classical shape optimization problems, i.e., diffuser, pip and bypass.

.4. Comparing the influence of the volume fractions

In this section, we perform a comparison test to demonstrate the influence of the volume fraction for topology
ptimization. We assume that the inlet is at the top of the box and the outlet is on the other three sides. We choose
he initial phase field as φ(x, y, 0) = rand(x, y), the temperature field as T (x, y, 0) = rand(x, y) and the initial velocity
ield as:

u (x, y, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, (x − 4.5) (x − 5.5)) , if y = 0, 4.5 ≤ x ≤ 5.5,
(0, (x − 3.5) (x − 6.5)) , if y = 10, 3.5 ≤ x ≤ 6.5,
((4.5 − y) (y − 5.5) , 0) , if x = 0, 4.5 ≤ y ≤ 5.5,
((y − 4.5) (y − 5.5) , 0) , if x = 10, 4.5 ≤ y ≤ 5.5,
(0, 0), otherwise.

or the velocity field u and phase field φ, we apply the Dirichlet boundary condition, i.e., the inlet and outlet fluid velocity
s consistent with the initial velocity field and the opening size remains the same during the evolution. It can be seen from
ig. 4, under the constraint of the initial velocity and the volume fraction, the topological structures has been characterized.
y comparing the results obtained with different volume fraction, i.e. V0 = 50 and 60, the following properties can be
ummarized: (i) The topological shape is influenced by the volume fraction of the fluid domain as well as the position
f inlet and outlet and initial velocity field. (ii) The small volume fraction results in a solid domain in the middle of the
luid domain and the lid-driven flow in the square cavity can be obtained during the evolution. (iii) The large volume
raction results in the uniform fluxes for the three outlets. Furthermore, we have to conclude that the volume fraction
an influence the velocity field during the evolution and leads to different topological structures.

.5. Topology optimization in an arbitrary domain

We will apply a topology optimization test in an arbitrary domain to verify that the proposed method is not limited
y the computational domain. To show the efficiency of the proposed system, we consider the computational domain as
= [0, 10] × [0, 10] with a 512 × 512 mesh grid. Here we use the Dirichlet boundary conditions for the blank domain

and assume that the temperature in the blank area is constant, i.e. φ(x, y, t) = 0 and T (x, y, t) = T0, if (x, y) ∈ ∂Ωs. The
heat source is located in the black domain and provides thermal energy for the whole system. The initial conditions are
chosen as

φ(x, y, 0) =

{
rand(x, y), if (x, y) ∈ Ω\Ωs,

0, otherwise,

u (x, y, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, (x − 4.5) (x − 5.5)) , if y = 0, 4.5 ≤ x ≤ 5.5,
(0, (x − 4.5) (x − 5.5)) , if y = 10, 4.5 ≤ x ≤ 5.5,
((4.5 − y) (y − 5.5) , 0) , if x = 0, 4.5 ≤ y ≤ 5.5,
((y − 4.5) (y − 5.5) , 0) , if x = 10, 4.5 ≤ y ≤ 5.5,
(0, 0), otherwise,

T (x, y, 0) =

{
T0, if (x, y) ∈ Ωs,

0, otherwise.

he schematic illustration is shown in Fig. 5. The other non-default parameters are chosen as: K1 : K2 = 10 : 10,
: C = 200 : 200, µ : µ = 0.1 : 0.1, α̃ = 10, γ = 0.1 and T = 10. Since the initial state is with random contributions,
1 2 1 2 ϵ 0
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t

Fig. 4. The dynamical behaviors of phase-field with different volume fraction (a) V0=50 and (b) V0=60. From left to right, the indicate times are
= 2, 6, 10 and 20, respectively.

Fig. 5. Schematic illustration of the initial velocity field and the computational domain.

we will perform a long-time evolution to simulate the changes of the topological structure and temperature. Fig. 6(a) and
(b) are the evolution of the phase-field and the temperature field. The indicated times for capturing are t = 0, 4, 8 and
20, respectively. From Fig. 6(a) we can see that the phase field converges under the influence of the fluid velocity field
and gradually forms a rhomboid pipe. From Fig. 6(b), we can see that the heat is spreading out from the center along the
fixed solid region, the temperature field has gradually evolved into a well-distributed mode from the initial distribution,
which corresponds with the physical context. Furthermore, we demonstrate the original energy and the modified energy
with or without heat source in Fig. 7. Since the heat source brings heat into the system, the total energy of the system
increases. Meanwhile, the modified energy and the original energy without heat source are non-increasing.
16
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T
t
t

Fig. 6. The dynamical behaviors of the topology optimization procedure in an complex domain. (a) is the evolution of the phase-field and (b) is the
evolution of the temperature field. From left to right, the indicated times are t = 0, 4, 8 and 20, respectively.

Fig. 7. The evolution of the modified energy and the original energy with or without heat source.

4.6. Investigation of the influence on the dynamics depending on time step

In this subsection, we will investigate the influence on the dynamics on time step to demonstrate the effectiveness of
the proposed method. The initial conditions are chosen as:

φ(x, y, 0) = rand(x, y)

(
0.5 − 0.5 tanh

(
1.5 −

√
(x − 5)2 + (y − 5)2

√
2ϵ

))
,

u(x, y, 0) =

{
((y − 7) (9 − y) , 0) , if x = 0 or 10, 7 ≤ y ≤ 9,
(0, 0) , otherwise,

T (x, y, 0) = rand(x, y).

he other non-default parameters are chosen as µ1 : µ1 = 0.01 : 0.01, β = 1, V0 = 70 and γ = 0.1. As shown in Fig. 8,
he results are obtained, from left to right, with time step ∆t = h, 0.1h and 0.01h, respectively. Obviously, it can be seen
hat there is no visible difference between the results obtained by using the time step of 0.1h and 0.01h, while the results
17
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Fig. 8. The results of the dynamics velocity field with different time step. From left to right, the result is obtained with ∆t = h, 0.1h and 0.01h,
espectively.

btained by using ∆t = h are disordered. Considering the strong coupling relation of the optimization problem, the time
tep∆t = 0.1h is efficient. In addition, we need to emphasize that the value of ϵ should not be too large, otherwise pseudo
iffusion results will be obtained under the influence of mean curvature caused by the phase field function Eq. (10). The
alue of ϵ should not be too small, otherwise computation will be interrupted due to the sharp interface.

.7. Comparison with previous method

We will perform the numerical tests to compare the topological changes with previous method [65]. They used a level-
et method to track shapes and the deformations by combining the Hadamard’s method and the body-fitted approach.
n this subsection, we compare the results with the simulation of [65]. In order to maximize heat removal through fluid
low, we need to revise the modified objective function and add a convective term as:

min
Ω

J(φ,u, T ) =

∫
Ω

(µ
2

|∇u|
2
− u · f

)
dx + γ

∫
Ω

(
ϵ

2
|∇φ|

2
+

1
ϵ
F (φ)

)
dx

+

∫
Ω

α(φ)
2

|u|
2 dx +

∫
Ω

1
2
T 2 dx +

β

2

(∫
Ω

φ dx − V0

)2

−

∫
Ω

ρCpu · ∇T dx,
(41)

ubject to Eq. (7)–(8). We assume that the fluid flows into the left side with fixed velocity u0 and T0 and flows out of
the right side. It is worth pointing out that minimizing the last term is equivalent to maximize the heat loss with a fix
initial condition of the fluid. We no longer carry out volume restrictions on fluid flux in this numerical test. Therefore,
the objective function can be simplified as:

min
Ω

J(φ,u, T ) =

∫
Ω

µ

2
|∇u|

2 dx + γ

∫
Ω

(
ϵ

2
|∇φ|

2
+

1
ϵ
F (φ)

)
dx +

∫
Ω

1
2
T 2 dx

+

∫
Ω

α(φ)
2

|u|
2 dx −

(∫
∂Ωin

ρCpT0u0 · n ds +

∫
∂Ωout

ρCpTu · n ds
)
,

(42)

here minimizing the last term in Eq. (41) means maximizing the heat flux out, i.e., max
∫
∂Ωout

ρCpTu · n ds, where n is
the out normal vector toward to ∂Ω . On the upper and lower boundaries, the Neumann boundary condition is used for
the velocity field and temperature field and the Dirichlet boundary condition is used for the phase field. Since we use no
external forces on the boundary, the divergence free conditions does not rest on the boundary. In addition to the default
parameters, we specify that the other parameters are chosen as: γ = 100, µ1 : µ2 = 0.01 : 0.01, ∆t = h2, β = 0
and f = (0, 0). The initial conditions of phase variable φ are demonstrated in Fig. 9(a) and the topological results by the
proposed method are shown in Fig. 9(b). The white line is the 0-contour line and the color map is corresponding to the
norm of the velocity. The closed regions with white lines are considered solid regions(low permeability) in our model. It
is obvious that the corresponding complex topology shape in [65] can also be obtained by our method. Furthermore, we
have to point out that the energy stability can be conserved by our proposed method.

4.8. Three dimensional test

In this subsection, we applied the topology optimization procedure with diffuser in three dimension as shown in Fig. 10.
The computational domain is chosen as Ω = [0, 10] × [0, 10] × [0, 10] with a 128 × 128 × 128 mesh grid. The initial
18
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c

Fig. 9. Topology optimization without volume constraint. (a) Initial condition of phase variable φ. (b) The results of by the proposed method.

onditions are chosen as

φ(x, y, z, 0) = 0.5

(
1 − tanh

((
(|z − 5| − 1.5)2 + (|y − 5| − 1.5)2 − 1

)
2
√
2ϵ

))
,

u (x, y, z, 0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.5

(
1 − tanh

((
(y − 5)2 + (z − 5)2 − 42

)
2
√
2ϵ

))
, if x = 0,

0.5

(
1 − tanh

((
(|y − 5| − 1.5)2 + (|z − 5| − 1.5)2 − 12

)
2
√
2ϵ

))
, if x = 10,

(0, 0) , otherwise,

T (x, y, z, 0) = φ(x, y, z, 0).

We choose one flow profile on the inflow boundary with center of circles being (0, 5, 5). The radius of the circle is
2. We choose the four flow profile on the outflow boundary with centers of circles being (10, 2.5, 2.5), (10, 7.5, 2.5),
(10, 2.5, 7.5) and (10, 7.5, 7.5), respectively. The radius of all circles equals 1. From Fig. 10(a) to (d), we demonstrate
the dynamical behaviors of the topology optimization with diffuser in three dimension at indicated times t = 0, 3, 6 and
10, respectively. It is obvious that the optimal configuration is smooth, which indicates that our method works well for
solving the three dimensional optimization problem. Furthermore, we demonstrate the evolution of the non-increasing
original energy in the three dimensional domain in Fig. 11. Note that the original energy has been normalized by the
initial energy. The inset figures are the slices (x = 5, y = 5, z = 5) of the optimal design results at the indicated times
t = 0, 3, 6 and 10, respectively. It can be seen from Fig. 11, the original energy reaches a steady state at t = 5. The
discrete energy in three dimension dissipates, which confirms that the proposed scheme is stable.

5. Conclusion

In this paper, an efficient topology optimization scheme for the thermal fluid was established, which is influenced by
several constraints, to adaptively design the fluid–solid coupling structure and force the objective energy dissipate. We
used the variational derivation and couple the Stokes equation and the heat transfer equation based on the phase-field
model. We have proved the existence of minimal solutions to the optimization problem under the constraints of multiple
physical fields. The Crank–Nicolson method was applied to discrete the numerical system. We proved the original energy
and the modified energy dissipate in the continuous and discrete framework respectively, which ensured that a larger
time step can be used in our method. The proposed discrete system maintains second-order spatial and temporal accuracy.
Several numerical tests were demonstrated to indicate that the numerical approach is efficient to design the complicated
structures of thermal-fluid flows.
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Fig. 10. The dynamical behaviors of the topology optimization with diffuser in three dimension. From (a) to (d) right, the indicated times are t = 0,
, 6 and 10, respectively.

Fig. 11. The evolution of the non-increasing original energy in the three-dimensional simulation. The inset figures are the slices (x = 5, y = 5, z = 5)
of the optimal design results at the indicated times t = 0, 3, 6 and 10, respectively. The original energy has been normalized by the initial energy.
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