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This paper proposes an unconditionally energy stable method for incompressible heat conductive fluids under 
the phase–field framework. We combine the complicated system by the Navier–Stokes equation, Cahn–Hilliard 
equation, and heat transfer equation. A Crank–Nicolson type scheme is employed to discretize the governing 
equation with the second-order temporal accuracy. The unconditional energy stability of the proposed scheme 
is proved, which means that a significantly larger time step can be used. The Crank–Nicolson type discrete 
framework is applied to obtain the second-order temporal accuracy. We perform the biconjugate gradient method 
and Fourier transform method to solve the discrete system. Several computational tests are performed to show 
the efficiency and robustness of the proposed method.

1. Introduction

The study of the hybrid system with binary immiscible phases under the thermal hydrodynamic framework has attracted considerable attention 
in recent years. The multiphysics coupling system, i.e., Navier–Stokes–Cahn–Hilliard-Heat-Transfer (NS–CH–HT) system, can be applied to various 
natural and engineering fields, such as cardiovascular modeling and simulation [1,2], oil recovery in petroleum engineering [3,4] and the mixing of 
surface water and shallow groundwater in the hypothetic zone [5–7]. Various computational frameworks were established to handle the complicated 
system. Freistühler and Kotschote [8] rederived various coupled systems from the first principles for fluids under the general constitutive laws. Wang 
et al. [9] developed a phase-field method for boiling heat transfer with binary fluid flows in the context of a high order spectral-element method. 
Based on the operator splitting and pressure stabilization method, Chen et al. [10] proposed a fully decoupled numerical method to solve the 
complicated system independently. Their method can preserve the underlying energy law and obtain unconditional stability. To examine both 
thermal conductivity and permeability in the porous region with the complicated system, Salimi et al. [11] used a hybrid method combined with 
the finite volume method and lattice Boltzmann method.

Extensive studies [12–14] were reported on the applications of the diffusive interface model, which assumes that there is a finite thickness 
layer between the two fluids. These methods were employed by volume-of-fluid [15,16], level-set [17,18], and phase-field methods [19,20]. The 
phase-field model [21] can capture the interface deformations with large topological changes, which is widely used in various fields [22,23]. The 
role of energy stability in the phase-field model has received increased attention in recent years. Based on the convex splitting method, Wise [24]

proposed the unconditionally gradient stable time marching method for the CH equation. Shen et al. [25] constructed the convex splitting schemes 
with second-order temporal accuracy and proved the unconditional energy stability. The stabilized linear approach [26] for the energy decreasing 
system has been established. This method can easily handle the nonlinear term due to the Lipschitz property of the modified potential. In view of the 
complexity of multiple physical fields, the scalar auxiliary variable approach [27] and the invariant energy quadratization algorithm were proposed 
[28]. However, few successful attempts were established for the complicated NS–CH–HT system.

In this study, we propose an efficient numerical scheme for the binary thermal fluid flows based on a phase-field framework. We mainly focus 
on the energy stability and simulation of heat conduction without involving the study of thermal convection and thermal radiation. The similar 
treatment can be found in several references [12,29–32]. Combining the CH equation, the incompressible NS equation, and the HT equation, the 
computational system considers the influence of the temperature field by the hydrodynamic system and does not consider the opposite relation. 
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We consider the ‘one-way’ coupled configuration with respect to the temperature, which indicated that the individual physical parameters are 
temperature independent. We focus on proving the unconditional energy stability and devising robust algorithms to solve the computational chal-

lenges caused by the multi-physics coupling problem. The projection method will be applied for the computation of the NS equation. We use the 
Crank–Nicolson type discrete scheme to obtain the second-order temporal accuracy. The hybrid algorithm will be solved by using the biconjugate 
gradient and fast Fourier transform methods. The proposed numerical scheme is proved to be unconditionally energy stable so that we can use a 
larger time step. Various numerical experiments are demonstrated to show the efficiency and robustness of the proposed scheme.

The outline of this paper is summarized as follows. In Section 2, we briefly review the coupled NS–CH–HT system, which describes the binary 
fluids flow with heat-flux dynamics. Section 3 provides the detailed illustrations of the discrete system and implementation of the proposed method. 
Section 4 demonstrates various numerical tests. Finally, the conclusion is drawn in Section 5.

2. Methodology

We discuss the dimensionless incompressible NS–CH–HT system without the external force term, i.e., gravity term. Let Ω ⊂ 𝐑𝑑𝑖𝑚(𝑑𝑖𝑚 = 2, 3)
denote the domain and let 𝜕Ω denote its boundary. For the spatial coordinate 𝐱 ∈Ω and time 𝑡 > 0, the hybrid system can be described as follows:

𝜌
𝜕𝐮 (𝐱, 𝑡)

𝜕𝑡
+ 𝜌

2
∇ ⋅ (𝐮 (𝐱, 𝑡)⊗ 𝐮 (𝐱, 𝑡)) + 𝜌

2
𝐮 (𝐱, 𝑡) ⋅∇𝐮 (𝐱, 𝑡)

= 1
𝑅𝑒

∇ ⋅
(
𝜂
(
∇𝐮 (𝐱, 𝑡) + ∇𝐮 (𝐱, 𝑡)𝑇

))
−∇𝑝(𝐱, 𝑡) − 𝜎

𝜖
𝜙(𝐱, 𝑡)∇𝜇(𝐱, 𝑡), (1a)

∇ ⋅ 𝐮(𝐱, 𝑡) = 0, (1b)

𝜕𝜙(𝐱, 𝑡)
𝜕𝑡

+∇ ⋅ (𝜙(𝐱, 𝑡)𝐮(𝐱, 𝑡)) = 1
𝑃𝑒

Δ𝜇(𝐱, 𝑡), (1c)

𝜇(𝐱, 𝑡) = 𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜖2Δ𝜙(𝐱, 𝑡), (1d)

𝜕𝑇 (𝐱, 𝑡)
𝜕𝑡

+ 𝜌𝑐𝐮(𝐱, 𝑡) ⋅∇𝑇 (𝐱, 𝑡) = 𝑘Δ𝑇 (𝐱, 𝑡). (1e)

Here, 𝐮(𝐱, 𝑡) =
(
𝑢(𝐱, 𝑡), 𝑣(𝐱, 𝑡)

)
, 𝜙(𝐱, 𝑡) and 𝑇 (𝐱, 𝑡) are the velocity field, phase variable and the temperature field, respectively. The density 𝜌, dynamic 

viscosity 𝜂, specific heat 𝑐 and the thermal conductivity 𝑘 are constants. The boundary conditions are chosen as:

𝐧 ⋅∇𝜙 = 𝐧 ⋅∇𝑢 = 𝐧 ⋅∇𝑣 = 𝐧 ⋅∇𝑝 = 0,

where 𝐧 is the unit normal vector to 𝜕Ω. For the incompressible NS equation (Eq. (1a)), we use the dimensionless parameter 𝑅𝑒 to denote the 
Reynolds number. The term 𝐮 ⊗ 𝐮 is the tensor product. The nonlinear advection term is treated as 𝐮 ⋅∇𝐮∕2 +∇ ⋅ (𝐮 ⊗ 𝐮)∕2 with the divergence free 
condition, because 𝐮 ⋅∇𝐮 = ∇ ⋅ (𝐮 ⊗ 𝐮) when ∇ ⋅ 𝐮 = 0. The similar treatment can be found in [33,34]. For the CH equation (Eqs. (1c) and (1d)), the 
chemical potential is denoted by 𝜇(𝐱, 𝑡). Here, 𝐹 (𝜙) = (𝜙2 − 1)2∕4 and 𝐹 ′(𝜙) = 𝜙3 − 𝜙. The parameter 𝜖 denotes the width of the diffusive interface. 
For the HT equation (Eq. (1e)), the temperature field is influenced by the relative velocity and phase field function. In our system, the temperature is 
influenced by velocity, pressure, and phase transition with the ‘one-way’ coupling manner, while the surface tension and various physical parameters 
of the binary fluids are independent of temperature. The main purpose of this model is to explore the influence of fluid flow on heat diffusion. The 
investigation of fluid dynamics of temperature actuation, i.e., thermal radiation and thermal convection, is not included in this model. The total 
energy of Eq. (1) can be defined as

𝐸 = ∫
Ω

(𝜌
2
|𝐮|2 + 𝜎𝜖

2
|∇𝜙|2 + 𝜎

𝜖
𝐹 (𝜙) + 1

2
|𝑇 |2)𝑑𝐱, (2)

which is combined by the kinetic energy, surface potential energy, and thermal energy [35]. We should point out that the proposed model is 
adopted for binary incompressible fluids with constant density. This model is widely used to simulate the two fluids flow as shown in [19,36,37]. 
For the hybrid system with variable densities, the Boussinesq approximation can be applied for computation [38,39]. The Boussinesq approximation 
is introduced in situations where the change of density is small so that the density difference caused by the thermal expansion is mostly felt in 
buoyancy. In [40], Chen et al. designed the conservative, unconditionally stable, decoupled numerical algorithms for sequential uncoupling of the 
computation of the CH equation, the Darcy equation, the heat equation and the NS equations. They realized the conservation of heat energy by 
employing a modified velocity in the convection-diffusion equation and established the numerical methods to satisfy the modified discrete energy 
laws. They also rigorously proved that their proposed method conserved the total mass and preserved the energy law. Several extensive studies 
[35,41,42] have been performed to investigate the phase field model under the quasi-incompressible hydrodynamic system. We should emphasize 
that the buoyancy exists whenever heat convection is involved, regardless whether the two fluids have matched density. In this paper, we use the 
hybrid system with the constant density to simplify our proof of energy dissipation. However, the constant density based system has been proposed 
by ignoring the thermal expansion and the buoyancy entirely. Before giving the theorem of energy dissipation, let us introduce the following 
property:

Remark 1. Let us denote by 𝐵(𝐮, 𝐯) = (𝐮 ⋅∇)𝐯 the nonlinear advection term with the skew-symmetric form and define 𝐛 (𝐮,𝐯,𝐰) ∶=
∫Ω𝐵(𝐮(𝐱, 𝐯(𝐱))𝐰(𝐱)𝑑𝐱. The following identity

𝑏(𝐮,𝐯,𝐯) = 0, if 𝐮 ⋅ 𝐧|𝜕Ω = 0 (3)

has been proved in [53]. (⋅, ⋅) and ‖ ⋅ ‖2 denote the 𝐿2 inner product and the 𝐿2 norm, respectively.

Theorem 1. The solution of Eq. (1) satisfies the energy dissipation law, i.e.

𝑑𝐸 = − 𝜂 ‖∇𝐮‖2 − 𝜎 ‖∇𝜇‖2 − 𝑘‖∇𝑇 ‖2 ≤ 0. (4)

𝑑𝑡 𝑅𝑒 𝜖𝑃 𝑒
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Proof. Let us take the derivative of the total energy with respect to time as:

𝑑𝐸

𝑑𝑡
= 𝜌

(
𝐮,𝐮𝑡

)
+ 𝜎𝜖

(
∇𝜙,∇𝜙𝑡

)
+ 𝜎

𝜖

(
𝐹 ′(𝜙), 𝜙𝑡

)
+
(
𝑇 ,𝑇𝑡

)
= 𝜌

(
𝐮,𝐮𝑡

)
+ 𝜎

𝜖

(
𝜇,𝜙𝑡

)
+
(
𝑇 ,𝑇𝑡

)
.

(5)

We consider the three items in Eq. (5) in the following steps:

Step 1. Let us take the 𝐿2 inner product of Eq. (1a) with 𝐮 as follows:

𝜌
(
𝐮𝑡,𝐮

)
= − 𝜂

𝑅𝑒
(∇𝐮,∇𝐮) + (𝑝,∇ ⋅ 𝐮) − 𝜎

𝜖
(𝜙∇𝜇,𝐮) = − 𝜂

𝑅𝑒
‖∇𝐮‖2 − 𝜎

𝜖
(𝜙∇𝜇,𝐮) . (6)

Here, we have used (∇ ⋅ (𝐮⊗ 𝐮) ,𝐮) = 0 due to Remark 1.

Step 2. Let us take the 𝐿2 inner product of Eq. (1c) with 𝜇 as:

(𝜙𝑡,𝜇) = − 1
𝑃𝑒

(∇𝜇,∇𝜇) − (∇ ⋅ (𝜙𝐮) , 𝜇) = − 1
𝑃𝑒

‖∇𝜇‖2 − (∇ ⋅ (𝜙𝐮) , 𝜇) . (7)

Step 3. Let us take the 𝐿2 inner product of Eq. (1e) with 𝑇 as:

(𝑇𝑡, 𝑇 ) = −𝑘‖∇𝑇 ‖2 − 𝜌𝑐(𝐮 ⋅∇𝑇 ,𝑇 ) = −𝑘‖∇𝑇 ‖2 . (8)

Here, we have used (𝐮 ⋅∇𝑇 , 𝑇 ) = 0 due to Remark 1. By multiplying Eq. (7) by 𝜎∕𝜖 and summing up the results with Eqs. (6) and (8), the energy 
dissipation can be proved as follows:

𝑑𝐸

𝑑𝑡
= 𝜌

(
𝐮,𝐮𝑡

)
+ 𝜎

𝜖

(
𝜇,𝜙𝑡

)
+
(
𝑇 ,𝑇𝑡

)
= − 𝜂

𝑅𝑒
‖∇𝐮‖2 − 𝜎

𝜖
(𝜙∇𝜇,𝐮) − 𝜎

𝜖𝑃 𝑒
‖∇𝜇‖2 − 𝜎

𝜖
(∇ ⋅ (𝜙𝐮) , 𝜇) − 𝑘‖∇𝑇 ‖2

= − 𝜂

𝑅𝑒
‖∇𝐮‖2 − 𝜎

𝜖𝑃 𝑒
‖∇𝜇‖2 − 𝑘‖∇𝑇 ‖2 ≤ 0

(9)

The proof is completed. □

3. Numerical approximations and energy dissipation

3.1. Second-order accuracy discrete scheme and energy dissipation

In this section, we present the discrete formulation and the algorithm for the proposed model. Let us consider the discrete NS–CH–HT system 
in Ω = (𝑎, 𝑏) × (𝑐, 𝑑) with a 𝑁𝑥 × 𝑁𝑦 mesh grid, where 𝑁𝑥 and 𝑁𝑦 are even integers. Thus, ℎ = (𝑏 − 𝑎)∕𝑁𝑥 = (𝑐 − 𝑑)∕𝑁𝑦 is the spatial step and 
Ω𝑑 = {𝐱𝑖𝑗 = (𝑥𝑖, 𝑦𝑖) = (𝑎 + (𝑖 − 1

2 )ℎ, 𝑐 + (𝑗 − 1
2 )ℎ)|1 ≤ 𝑖 ≤𝑁𝑥, 1 ≤ 𝑗 ≤𝑁𝑦} is the set of cell nodes. Let us use 𝑢𝑛

𝑖,𝑗
, 𝑣𝑛

𝑖,𝑗
, 𝑝𝑛

𝑖,𝑗
, 𝜇𝑛

𝑖,𝑗
, 𝜙𝑛

𝑖,𝑗
and 𝑇 𝑛

𝑖,𝑗
to denote the 

discrete approximations of 𝑢(𝐱𝑖𝑗 , 𝑛Δ𝑡), 𝑣(𝐱𝑖𝑗 , 𝑛Δ𝑡), 𝑝(𝐱𝑖𝑗 , 𝑛Δ𝑡), 𝜇(𝐱𝑖𝑗 , 𝑛Δ𝑡), 𝜙(𝐱𝑖𝑗 , 𝑛Δ𝑡) and 𝑇 (𝐱𝑖𝑗 , 𝑛Δ𝑡), respectively. Here, Δ𝑡 is the temporal step. The 
discrete operators used here are defined as:

∇𝑥
𝑑
𝜙
𝑖+ 1

2 𝑗
=

𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗

ℎ
, ∇𝑦

𝑑
𝜙
𝑖,𝑗+ 1

2
=

𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗

ℎ
,

Δ𝑑𝜙𝑖,𝑗 =
1
ℎ

(
∇𝑥
𝑑
𝜙
𝑖+ 1

2 𝑗
−∇𝑥

𝑑
𝜙
𝑖− 1

2 𝑗

)
+ 1

ℎ

(
∇𝑦

𝑑
𝜙
𝑖,𝑗+ 1

2
− ∇𝑦

𝑑
𝜙
𝑖,𝑗− 1

2

)
,

(𝜙,𝜓)𝑑 = ℎ2
𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=1

𝜙𝑖,𝑗𝜓𝑖,𝑗 ,
(
∇𝑑𝜙,∇𝑑𝜓

)
𝑑
= ℎ2

𝑁𝑥∑
𝑖=1

𝑁𝑦∑
𝑗=1

(
∇𝑥
𝑑
𝜙𝑖𝑗∇𝑥

𝑑
𝜓𝑖𝑗 +∇𝑦

𝑑
𝜙𝑖𝑗∇

𝑦

𝑑
𝜓𝑖𝑗

)
,

‖𝜙‖2
𝑑
= (𝜙,𝜙)𝑑 , ‖‖∇𝑑𝜙

‖‖2𝑑 = (
∇𝑑𝜙,∇𝑑𝜙

)
𝑑
.

The zero Neumann boundary conditions are used as 𝑢𝑛0,𝑗 = 𝑢𝑛1,𝑗 , 𝑢
𝑛
𝑖,0 = 𝑢𝑛

𝑖,1, 𝑢
𝑛
𝑁𝑥+1,𝑗

= 𝑢𝑛
𝑁𝑥,𝑗

, and 𝑢𝑛
𝑖,𝑁𝑦+1

= 𝑢𝑛
𝑖,𝑁𝑦

. The discrete boundaries conditions 
for the other parameters are treated in the same manner. By applying the Crank–Nicolson type scheme to discretize the governing Eq. (1), we obtain

𝜌
𝐮∗
𝑖,𝑗

− 𝐮𝑛
𝑖,𝑗

Δ𝑡
+ 𝜌

2

(
∇𝑑 ⋅

(
�̃�
𝑛+ 1

2
𝑖,𝑗

⊗ (
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2
)

))
+ 𝜌

2

(
�̃�
𝑛+ 1

2
𝑖,𝑗

⋅∇𝑑

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

))
,

= −∇𝑑𝑝
𝑛
𝑖,𝑗 +

1
𝑅𝑒

∇𝑑 ⋅

(
𝜂∇𝑑

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

))
− 𝜎

𝜖
𝜙
𝑛+ 1

2
𝑖,𝑗

∇𝑑𝜇
𝑛+ 1

2
𝑖,𝑗

, (10a)

𝜌
𝐮𝑛+1
𝑖,𝑗

− 𝐮∗
𝑖,𝑗

Δ𝑡
+ 1

2
∇𝑑

(
𝑝𝑛+1
𝑖,𝑗

− 𝑝𝑛𝑖,𝑗

)
= 0, (10b)

∇𝑑 ⋅ 𝐮𝑛+1𝑖,𝑗
= 0, (10c)

𝜙𝑛+1
𝑖,𝑗

−𝜙𝑛
𝑖,𝑗

Δ𝑡
+∇𝑑 ⋅

(
𝜙
𝑛+ 1

2
𝑖,𝑗

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖

2

))
= 1

𝑃𝑒
Δ𝑑𝜇

𝑛+ 1
2

𝑖,𝑗
, (10d)

𝜇
𝑛+ 1

2
𝑖,𝑗

=𝐺
(
𝜙
𝑛+1∕2
𝑖,𝑗

)
− 𝜖2Δ𝑑

𝜙𝑛+1
𝑖,𝑗

+𝜙𝑛
𝑖,𝑗

2
, (10e)

𝑇 𝑛+1
𝑖,𝑗

− 𝑇 𝑛
𝑖,𝑗

Δ𝑡
+ 𝜌𝑐𝐮

𝑛+ 1
2

𝑖,𝑗
⋅∇𝑑𝑇

𝑛+ 1
2

𝑖,𝑗
=∇ ⋅ 𝑘∇𝑑𝑇

𝑛+ 1
2

𝑖,𝑗
, (10f)
28
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where we used (̃⋅)𝑛+1∕2 =
(
3 (⋅)𝑛 − (⋅)𝑛−1

)
∕2 and (⋅)𝑛+1∕2 =

(
(⋅)𝑛+1 + (⋅)𝑛

)
∕2. The nonlinear term 𝐺(𝜙𝑛+1∕2

𝑖,𝑗
) is defined as

𝐺(𝜙𝑛+1∕2
𝑖,𝑗

) =
(
𝐹 (𝜙𝑛+1

𝑖,𝑗
) − 𝐹 (𝜙𝑛

𝑖,𝑗 )
)
∕
(
𝜙𝑛+1
𝑖,𝑗

− 𝜙𝑛
𝑖,𝑗

)
= 0.25

((
𝜙𝑛+1
𝑖,𝑗

)2
+
(
𝜙𝑛
𝑖,𝑗

)2
− 2

)(
𝜙𝑛+1
𝑖,𝑗

+𝜙𝑛
𝑖,𝑗

)
.

(11)

The proposed method is computed by a projection method and 𝐮∗
𝑖,𝑗

denotes the intermediate velocity. We will prove the unconditional energy 
dissipation law for the discrete system.

Theorem 2. The solution of Eqs. (10) satisfies the energy dissipation law, i.e.,

𝐸𝑛+1 −𝐸𝑛 = − Δ𝑡𝜂
4𝑅𝑒

‖‖∇𝑑𝐮𝑛 +∇𝑑𝐮∗‖‖2𝑑 − Δ𝑡𝜎
𝜖𝑃 𝑒

‖‖‖‖∇𝑑𝜇
𝑛+ 1

2
‖‖‖‖2𝑑 − 𝑘‖‖∇𝑑𝑇

‖‖2𝑑 ≤ 0, (12)

where 𝐸𝑛 =𝐸𝑛 +Δ𝑡2 ‖‖∇𝑑𝑝
𝑛‖‖2𝑑 ∕(8𝜌) and 𝐸𝑛 = 𝜌 ‖𝐮𝑛‖2

𝑑
∕2 + 𝜎𝜖‖∇𝑑𝜙

𝑛‖2
𝑑
∕2 + 𝜎(𝐹 (𝜙𝑛), 1)𝑑∕𝜖 + ‖𝑇 𝑛‖2

𝑑
∕2.

Proof. We consider the three items in Eq. (12) by the following steps:

Step 1. Let us take the 𝐿2 inner product of Eq. (10a) with (𝐮∗ + 𝐮𝑛)Δ𝑡∕2𝜌 as:(‖𝐮∗‖2𝑑 − ‖𝐮𝑛‖2
𝑑

)
2Δ𝑡

= − 1
2𝜌

(
∇𝑑𝑝

𝑛,𝐮𝑛 + 𝐮∗
)
𝑑
− 𝜎

2𝜖

(
𝜙
𝑛+ 1

2 ∇𝑑𝜇
𝑛+ 1

2 ,𝐮𝑛 + 𝐮∗
)
𝑑
− 𝜂

4𝜌𝑅𝑒
‖‖‖∇𝑑

(
𝐮𝑛 + 𝐮∗

)‖‖‖2𝑑 . (13)

Here, we have used the following equation(
𝐮𝑛 + 𝐮∗, �̃�𝑛+

1
2 ⋅∇𝑑

(
𝐮𝑛 + 𝐮∗

)
+∇𝑑 ⋅

(
�̃�𝑛+

1
2
(
𝐮𝑛 + 𝐮∗

)))
𝑑

=
((

𝐮𝑛 + 𝐮∗
)
�̃�𝑛+

1
2 ,∇𝑑

(
𝐮𝑛 + 𝐮∗

))
𝑑
+
((

𝐮𝑛 + 𝐮∗
)
,∇𝑑 ⋅

(
�̃�𝑛+

1
2
(
𝐮𝑛 + 𝐮∗

)))
𝑑
= 0,

(14)

with the zero Neumann boundary condition. Let us take the 𝐿2 inner product of Eq. (10b) with 𝐮𝑛+1Δ𝑡∕𝜌 as(
𝐮𝑛+1,𝐮𝑛+1 − 𝐮∗

)
𝑑
+ Δ𝑡

2𝜌
(
𝐮𝑛+1,∇𝑑

(
𝑝𝑛+1 − 𝑝𝑛

))
𝑑

= 1
2

(‖‖‖𝐮𝑛+1‖‖‖2𝑑 − ‖‖𝐮∗‖‖2𝑑)+ 1
2
‖‖‖𝐮𝑛+1 − 𝐮∗‖‖‖2𝑑 − Δ𝑡

2𝜌
(
∇𝑑 ⋅ 𝐮𝑛+1,

(
𝑝𝑛+1 − 𝑝𝑛

))
𝑑

= 1
2

(‖‖‖𝐮𝑛+1‖‖‖2𝑑 − ‖‖𝐮∗‖‖2𝑑)+ Δ𝑡2

8𝜌2
‖‖‖∇𝑑

(
𝑝𝑛+1 − 𝑝𝑛

)‖‖‖2𝑑 = 0.

(15)

Here, we have used Eqs. (10b) and (10c). Thus, we have

1
2

(‖‖‖𝐮𝑛+1‖‖‖2𝑑 − ‖‖𝐮∗‖‖2𝑑) = −Δ𝑡2

8𝜌2
‖‖‖∇𝑑

(
𝑝𝑛+1 − 𝑝𝑛

)‖‖‖2𝑑 . (16)

Step 2. Let us take the 𝐿2 inner product of Eq. (10d) with 𝜇𝑛+1∕2 as:

1
Δ𝑡

(
𝜇
𝑛+ 1

2 , 𝜙𝑛+1 − 𝜙𝑛
)
𝑑
= − 1

𝑃𝑒
||∇𝑑𝜇

𝑛+ 1
2 ||2

𝑑
− 1

2

(
𝜇
𝑛+ 1

2 ,∇𝑑 ⋅
(
𝜙
𝑛+ 1

2 (𝐮𝑛 + 𝐮∗)
))

𝑑
. (17)

Step 3. Let us take the 𝐿2 inner product of Eq. (10f) with 𝑇 𝑛+1∕2 as:

1
2Δ𝑡

(
𝑇 𝑛+1 − 𝑇 𝑛, 𝑇 𝑛+1 + 𝑇 𝑛

)
𝑑
−
(
∇𝑑 ⋅

(
𝑘∇𝑑𝑇

𝑛+ 1
2
)
, 𝑇

𝑛+ 1
2
)
𝑑
+ 𝜌𝑐

(
𝐮𝑛+

1
2 ⋅∇𝑑𝑇

𝑛+ 1
2 , 𝑇

𝑛+ 1
2
)
𝑑
= 0,

which implies that

1
2
(‖𝑇 𝑛+1‖2

𝑑
− ‖𝑇 𝑛‖2

𝑑

)
= −Δ𝑡𝑘

‖‖‖‖∇𝑑𝑇
𝑛+ 1

2
‖‖‖‖2𝑑 . (18)

By combining Eqs. (13), (16), (17) and (18), we have the following energy dissipation law:

𝐸𝑛+1 −𝐸𝑛 =
(
𝐸𝑛+1 + Δ𝑡2 ‖‖‖∇𝑑𝑝

𝑛+1‖‖‖2𝑑 ∕(8𝜌)
)
−
(
𝐸𝑛 +Δ𝑡2 ‖‖∇𝑑𝑝

𝑛‖‖2𝑑 ∕(8𝜌))
= 𝜌

‖‖‖𝐮𝑛+1‖‖‖2𝑑 ∕2 + 𝜎𝜖‖∇𝑑𝜙
𝑛+1‖2

𝑑
∕2 + 𝜎

𝜖
(𝐹 (𝜙𝑛+1),1)𝑑 +

‖‖‖𝑇 𝑛+1‖‖‖2𝑑 ∕2 +Δ𝑡2 ‖‖‖∇𝑑𝑝
𝑛+1‖‖‖2𝑑 ∕(8𝜌)

− 𝜌‖𝐮𝑛‖2𝑑 ∕2 + 𝜎𝜖‖∇𝑑𝜙
𝑛‖2

𝑑
∕2 + 𝜎

𝜖
(𝐹 (𝜙𝑛),1)𝑑 + ‖𝑇 𝑛‖2𝑑 ∕2 +Δ𝑡2 ‖‖∇𝑑𝑝

𝑛‖‖2𝑑 ∕(8𝜌)
= 𝜌

2

(‖‖‖𝐮𝑛+1‖‖‖2𝑑 − ‖𝐮𝑛‖2𝑑)+ Δ𝑡2
8𝜌

(‖∇𝑑𝑝
𝑛+1‖2

𝑑
− ‖∇𝑑𝑝

𝑛‖2
𝑑

)
𝑑
+Δ𝑡𝜎𝜖

(
Δ𝑑𝜙

𝑛+ 1
2 ,

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡

)
𝑑

+Δ𝑡
(
𝑇
𝑛+ 1

2 ,
𝑇 𝑛+1 − 𝑇 𝑛

Δ𝑡

)
+ Δ𝑡𝜎

𝜖

(
𝐹 (𝜙𝑛+1) − 𝐹 (𝜙𝑛)

𝜙𝑛+1 −𝜙𝑛
,
𝜙𝑛+1 − 𝜙𝑛

Δ𝑡

)
𝑑

(19)

= 𝜌

2

(‖‖‖𝐮𝑛+1‖‖‖2𝑑 − ‖‖𝐮∗‖‖2𝑑)+ 𝜌

2

(‖‖𝐮∗‖‖2𝑑 − ‖𝐮𝑛‖2𝑑)+ Δ𝑡𝜎
𝜖

(
𝜇
𝑛+ 1

2 ,
𝜙𝑛+1 − 𝜙𝑛

Δ𝑡

)
−Δ𝑡𝑘‖∇𝑑𝑇

𝑛+ 1
2 ‖2

𝑑
+ Δ𝑡2 (‖∇𝑑𝑝

𝑛+1‖2
𝑑
− ‖∇𝑑𝑝

𝑛‖2
𝑑

)

8𝜌

29
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= − Δ𝑡𝜂
4𝑅𝑒

‖∇𝑑

(
𝐮𝑛 + 𝐮∗

)‖2
𝑑
+ 𝜎Δ𝑡

𝜖

⎛⎜⎜⎝−
||∇ℎ𝜇

𝑛+ 1
2 ||𝑑

𝑃 𝑒
− 1

2

(
𝜇
𝑛+ 1

2 ,∇𝑑 ⋅
(
𝜙
𝑛+ 1

2
(
𝐮𝑛 + 𝐮∗

)))
𝑑

⎞⎟⎟⎠
− Δ𝑡𝜎𝜌

𝜖

(
𝜙
𝑛+ 1

2 ∇𝑑𝜇
𝑛+ 1

2 ,
1
2
(
𝐮𝑛 + 𝐮∗

))
𝑑
− 𝑘‖‖∇𝑑𝑇

‖‖2𝑑
= − Δ𝑡𝜂

4𝑅𝑒
‖‖∇𝑑𝐮𝑛 +∇𝑑𝐮∗‖‖2𝑑 − Δ𝑡𝜎

𝜖𝑃 𝑒

‖‖‖‖∇𝑑𝜇
𝑛+ 1

2
‖‖‖‖2𝑑 − 𝑘‖‖∇𝑑𝑇

‖‖2𝑑 ≤ 0,

which completes the proof. □

3.2. Numerical solutions for the discrete system

In this section, we use a projection method to obtain the momentum equations [44]. By giving 𝐮𝑛, 𝜙𝑛 and 𝑇 𝑛, we want to find 𝐮𝑛+1, 𝑝𝑛+1, 𝜙𝑛+1

and 𝑇 𝑛+1 through the discrete system Eq. (10). We demonstrate the main procedure of the proposed method as:

1. Initialize the concentration profile 𝜙0, temperature field 𝑇 0 and the velocity field 𝐮0.
2. By applying the Picard iteration method for Eqs. (10d) and (10e), we update 𝜙𝑛+1 and 𝐮∗ as follows:

𝜌
𝐮∗,𝑚+1
𝑖,𝑗

− 𝐮𝑛
𝑖,𝑗

Δ𝑡
+ 𝜌

2

⎛⎜⎜⎝∇𝑑 ⋅
⎛⎜⎜⎝�̃�

𝑛+ 1
2

𝑖,𝑗
⊗ (

𝐮∗,𝑚+1
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2
)
⎞⎟⎟⎠
⎞⎟⎟⎠+

𝜌

2

⎛⎜⎜⎝�̃�
𝑛+ 1

2
𝑖,𝑗

⋅∇𝑑

⎛⎜⎜⎝
𝐮∗,𝑚+1
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

= −∇𝑑𝑝
𝑛
𝑖,𝑗 +

1
𝑅𝑒

∇𝑑 ⋅
⎛⎜⎜⎝𝜂∇𝑑

⎛⎜⎜⎝
𝐮∗,𝑚+1
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

⎞⎟⎟⎠
⎞⎟⎟⎠− 𝜎

𝜖
𝜙
𝑛+ 1

2
𝑖,𝑗

∇𝑑𝜇
𝑛+ 1

2 ,𝑚

𝑖,𝑗
, (20a)

𝜙
𝑛+1,𝑚+1
𝑖,𝑗

−𝜙𝑛
𝑖,𝑗

Δ𝑡
+ 1

2
∇𝑑 ⋅

(
𝜙
𝑛+ 1

2
𝑖,𝑗

(
𝐮𝑛𝑖,𝑗 + 𝐮∗,𝑚+1

𝑖,𝑗

))
= 1

𝑃𝑒
Δ𝑑𝜇

𝑛+ 1
2 ,𝑚+1

𝑖,𝑗
, (20b)

𝜇
𝑛+ 1

2 ,𝑚+1
𝑖,𝑗

=𝐺
(
𝜙𝑛+1,𝑚+1)− 𝜖2

Δ𝑑𝜙
𝑛+1,𝑚+1
𝑖,𝑗

+Δ𝑑𝜙
𝑛
𝑖,𝑗

2
, (20c)

where 𝑚 is the index of Picard iteration. The Picard iteration is applied to linearize the original nonlinear problem. The initial conditions are 
chosen as 𝐮∗,0

𝑖,𝑗
= 2𝐮𝑛

𝑖,𝑗
− 𝐮𝑛−1

𝑖,𝑗
, 𝜙𝑛+1,0

𝑖,𝑗
= 2𝜙𝑛

𝑖,𝑗
−𝜙𝑛−1

𝑖,𝑗
and 𝜇𝑛+1,0

𝑖,𝑗
= 2𝜇𝑛

𝑖,𝑗
−𝜇𝑛−1

𝑖,𝑗
. In order to ensure the theoretical energy dissipation, the Adams–Bashforth 

extrapolation has been used to handle the convection term. Here, we use the second-order Taylor expansion for 𝐺(𝜙𝑛+1,𝑚+1
𝑖,𝑗

) as

𝐺(𝜙𝑛+1,𝑚+1
𝑖,𝑗

) = 0.25
(
(𝜙𝑛+1,𝑚+1

𝑖,𝑗
)3 + (𝜙𝑛

𝑖,𝑗 − 2)(𝜙𝑛+1,𝑚+1
𝑖,𝑗

)2 + (𝜙𝑛
𝑖,𝑗 − 1)2𝜙𝑛+1,𝑚+1

𝑖,𝑗
+ 𝜙𝑛

𝑖,𝑗 (𝜙
𝑛
𝑖,𝑗 − 1)2

)
= 0.25((𝜙𝑛+1,𝑚

𝑖,𝑗
)3 + (𝜙𝑛

𝑖,𝑗 − 2)(𝜙𝑛+1,𝑚
𝑖,𝑗

)2 + (𝜙𝑛
𝑖,𝑗 − 1)2𝜙𝑛+1,𝑚

𝑖,𝑗
+ 𝜙𝑛

𝑖,𝑗 (𝜙
𝑛
𝑖,𝑗 − 1)2

+ (3(𝜙𝑛+1,𝑚
𝑖,𝑗

)2 + 2(𝜙𝑛
𝑖,𝑗 − 2)𝜙𝑛+1,𝑚

𝑖,𝑗
+ (𝜙𝑛

𝑖,𝑗 − 1)2)(𝜙𝑛+1,𝑚+1
𝑖,𝑗

− 𝜙
𝑛+1,𝑚
𝑖,𝑗

)).

(21)

After the linearization of Eq. (20b), we use the biconjugate gradient stabilized method to solve Eqs. (20b) and (20c). The procedure has been applied 
until the error is smaller than a given tolerance 𝑡𝑜𝑙 as

||𝜙𝑛+1,𝑚+1
𝑖,𝑗

−𝜙
𝑛+1,𝑚
𝑖,𝑗

||𝑑 + ||𝜇𝑛+1,𝑚+1
𝑖,𝑗

− 𝜇
𝑛+1,𝑚
𝑖,𝑗

||𝑑 + ||𝐮𝑛+1,𝑚+1
𝑖,𝑗

− 𝐮𝑛+1,𝑚
𝑖,𝑗

||𝑑 ≤ 𝑡𝑜𝑙.

We set 𝜙𝑛+1
𝑖,𝑗

= 𝜙
𝑛+1,𝑚+1
𝑖,𝑗

, 𝜇𝑛+1
𝑖,𝑗

= 𝜇
𝑛+1,𝑚+1
𝑖,𝑗

, and 𝐮∗
𝑖,𝑗

= 𝐮∗,𝑚+1
𝑖,𝑗

after the inequality is satisfied. In this paper, we choose 𝑡𝑜𝑙 = 1𝑒-8.

3. Solve the pressure field 𝑝𝑛+1 by taking the divergence of both the sides of Eq. (10b):

Δ𝑑𝑝
𝑛+1
𝑖,𝑗

=Δ𝑑𝑝
𝑛
𝑖,𝑗 +

2𝜌
Δ𝑡

∇𝑑 ⋅ 𝐮∗𝑖,𝑗 , (22)

which can be solved by a fast Fourier transform algorithm [47]. After updating the pressure field, we can obtain the divergence-free velocities as:

𝐮𝑛+1
𝑖,𝑗

= Δ𝑡
2𝜌

∇𝑑

(
𝑝𝑛𝑖,𝑗 − 𝑝𝑛+1

𝑖,𝑗

)
+ 𝐮∗𝑖,𝑗 . (23)

4. Solve the following equation for the temperature field 𝑇 𝑛+1. By applying the Picard iteration as

𝑇 𝑛+1
𝑖,𝑗

− 𝑇 𝑛
𝑖,𝑗

Δ𝑡
+ 𝜌𝑐𝐮

𝑛+ 1
2

𝑖,𝑗
⋅∇𝑑𝑇

𝑛+ 1
2

𝑖,𝑗
=∇ ⋅ 𝑘∇𝑑𝑇

𝑛+ 1
2

𝑖,𝑗
. (24)

The proposed algorithm is proved to be unconditionally energy stable, which conserves the numerical stability with a larger time step.

4. Numerical experiments

Several numerical tests have been performed such as the convergence test, shape relaxation simulation, simulation of shear flow, two-phase spin-

odal decomposition in an arbitrary domain and Taylor–Couette cell, simulation of the Kelvin–Helmholtz (KH) and Rayleigh–Taylor (RT) instabilities 
and the simulation of gravity-driven flow in a porous medium. Throughout this paper, we will use the computational domain as Ω = [−1, 1] × [−1, 1]
with a 512 ×512 mesh-grid and use the following parameters for the numerical simulations: 𝜌 = 𝜂 = 𝑐 = 𝑘 = 1, 𝑅𝑒 = 100, 𝜖 = 5ℎ∕(4

√
2atanh(0.9)), 𝜎 = 𝜖, 

𝑃𝑒 = 1∕𝜖, and Δ𝑡 = 0.5ℎ.
30



Q. Xia, J. Kim, B. Xia et al. Computers and Mathematics with Applications 123 (2022) 26–39
Table 1

Temporal convergence results for velocity field 𝑢 and 𝑣 of the NS equation, phase field 𝜙 of the CH 
equation and temperature field 𝑇 of the HT equation.

Δ𝑡 Error Order

𝑢 𝑣 𝜙 𝑇 𝑢 𝑣 𝜙 𝑇

6e − 5 2.341e − 02 2.241e − 02 6.401e − 03 5.232e − 03 − − − −
3e − 5 6.192e − 03 5.843e − 03 1.772e − 03 1.324e − 03 1.92 1.94 1.85 1.98

1.5e − 5 1.687e − 03 1.422e − 03 4.201e − 04 3.146e − 04 1.88 2.04 2.08 2.07

Table 2

Spatial convergence results for velocity field 𝑢 and 𝑣 of the NS equation, phase field 𝜙 of the CH 
equation and temperature field 𝑇 of the HT equation.

𝑁 Error Order

𝑢 𝑣 𝜙 𝑇 𝑢 𝑣 𝜙 𝑇

64 1.140e − 03 1.187e − 03 1.764e − 04 1.591e − 04 − − − −
128 2.823e − 04 3.044e − 04 4.373e − 05 3.789e − 05 2.01 1.96 2.01 2.07

256 7.057e − 05 7.425e − 05 1.088e − 05 9.527e − 06 2.00 2.04 2.01 1.99

Fig. 1. Comparison of the results with temporal steps of (a) Δ𝑡 = 0.01ℎ and (b) Δ𝑡 = 0.001ℎ, respectively. From left to right, the results are demonstrations of phase 
𝜙, velocity field 𝐮 and temperature field 𝑇 up to time 𝑡 = 0.1, respectively.

4.1. Convergence test

Because the computational system does not have the closed-form analytical solution, 𝜙𝐫𝐞𝐟 is denoted to be the reference solution which is 
obtained by a very fine time step or a very fine grid. The initial condition is chosen as{

𝜙(𝑥, 𝑦,0) = sin(𝜋𝑥) sin(𝜋𝑦), 𝑇 (𝑥, 𝑦,0) = cos(𝜋𝑥) cos(𝜋𝑦),

𝑢(𝑥, 𝑦,0) = cos(𝜋𝑥) sin(𝜋𝑦), 𝑣(𝑥, 𝑦,0) = sin(𝜋𝑥) cos(𝜋𝑦).
(25)

The non-default parameters are chosen as 𝑅𝑒 = 50. We use the decreasing time steps as Δ𝑡 = 1.5e-5, Δ𝑡 = 3e-5, and Δ𝑡 = 6e-5 with the same spatial 
size ℎ = 1∕256 for testing the second-order temporal accuracy. The reference solution is assumed to be obtained using a temporal step Δ𝑡 = 7.5e-6. 
Let us define the error as 𝑒𝑖,Δ𝑡 ∶= 𝜙𝑖,Δ𝑡 − 𝜙𝐫𝐞𝐟

𝑖
. Let log2(||𝑒𝑖,Δ𝑡||2∕||𝑒𝑖,Δ𝑡∕2||2) be the rate of convergence. We list the convergence results in Table 1. As 

can be seen, the proposed method is indeed second-order accurate in time, which is expected from the discrete scheme Eq. (10). To demonstrate 
the convergence rate for the spatial discretization, we use the fixed temporal step size Δ𝑡 = 7.5e-6 and run the procedure until 𝑡 = 0.1. We use 
the decreasing spatial steps as ℎ = 1∕64, ℎ = 1∕128, and ℎ = 1∕256. Let us define the error as 𝑒𝑖,ℎ ∶= 𝜙𝑖,ℎ − 𝜙𝐫𝐞𝐟

𝑖
. Let log2(||𝑒𝑖,ℎ||2∕||𝑒𝑖,ℎ∕2||2) be the 

convergence rate. For the justification of this computation, the reference solution is assumed to be obtained using a very fine space grid size 
ℎ = 1∕512. The results are shown in Table 2. As can be seen from the results, the spatial second-order accuracy has been obtained by the proposed 
method.

With the same initial condition as shown in Eq. (25), we run the procedure up to time 𝑡 = 0.1 with Δ𝑡 = 0.01ℎ and Δ𝑡 = 0.001ℎ. We have shown the 
results in Fig. 1(a) and (b), respectively. The results are shown for phase 𝜙, velocity field 𝐮 and temperature field 𝑇 up to time 𝑡 = 0.1, respectively. 
These figures indicate that the proposed method can obtain similar results using Δ𝑡 = 0.01ℎ and Δ𝑡 = 0.001ℎ. Therefore, we suggest to use Δ𝑡 = 0.01ℎ.

4.2. Energy stability and mass conservation

We numerically confirm that the proposed system satisfies the energy dissipation law. We consider two droplets in Ω𝑑 = [−1, 1] × [−1, 1] with a 
256 × 256 mesh grid. Let us define
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Fig. 2. Normalized energy evolution and normalized mass evolution over the entire time period of simulation. The sub-figures show the process of merging 
morphology.

Fig. 3. The dynamical behaviors of shape relaxation under the influence of surface tension.

⎧⎪⎨⎪⎩
𝜙(𝑥, 𝑦,0) = 0.5 + 0.5𝑡 tanh

(√
(|𝑥|− 0.3)2 + 𝑦2 − 0.3√

2𝜖

)
,

𝑢(𝑥, 𝑦,0) = 𝑣(𝑥, 𝑦,0) = 𝑝(𝑥, 𝑦,0) = 𝑇 (𝑥, 𝑦,0) = 0.

The time step Δ𝑡 = 5ℎ is used. In Fig. 2, the non-increasing normalized modified energy, the normalized original energy, and the normalized mass 
have been demonstrated, which numerically confirms that our algorithm guarantees energy dissipation. The subfigures show the fusion evolution of 
two droplets. It can be observed that the two droplets, which are initially tangent to each other, gradually merge into one large droplet. Furthermore, 
the modified energy is non-increasing with respect to time. We should remark that the difference between the original and modified energies is a 
second-order error with respect to the temporal step, i.e., Δ𝑡2 ‖‖∇𝑑𝑝

𝑛‖‖2𝑑 ∕(8𝜌). Therefore, the difference between the original and modified energies is 
small.

4.3. Shape relaxation under the influence of surface tension

We study the equilibrium phase interface under the surface tension. The shape relaxation with the binary phases flow is performed in Fig. 3. Let 
𝐮 ∶= (𝑢, 𝑣). The initial conditions are chosen as⎧⎪⎨⎪⎩

𝜙(𝑥, 𝑦,0) =

{
1 if

√
𝑥2 + 𝑦2 + 0.3cos(8𝜃) ≤ 0,

−1 otherwise ,
where 𝜃(𝑥, 𝑦) =

{
atanh(𝑦∕𝑥) if 𝑥 ≠ 0,

𝜋 + atanh(𝑦∕𝑥) otherwise ,

𝑢(𝑥, 𝑦,0) = 𝑣(𝑥, 𝑦,0) = 0, 𝑝(𝑥, 𝑦,0) = 0.
(26)

The initial parameters are chosen as: 𝜖 = 4ℎ∕(2
√
2atanh(0.9)), Bo = 1∕𝜖, Pe = 1∕𝜖, Δ𝑡 = 0.01ℎ, 𝜌1 ∶ 𝜌2 = 𝜂1 ∶ 𝜂2 = 𝑐1 ∶ 𝑐2 = 𝑘1 ∶ 𝑘2 = 1 ∶ 1. As can be seen 

in Fig. 3, under the influence of surface tension, the droplet evolves to a circle until 𝑡 = 61.04.

4.4. Simulation of shear flow

In this section, we investigate the simulation of shear flow. We choose the initial conditions as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜙(𝑥, 𝑦,0) = 3 − tanh

((|𝑥|+ |𝑦− 0.4|2 − 0.15
)√

5𝜖

)
− tanh

(|𝑥|+ |𝑦+ 0.4|2 − 0.15√
5𝜖

)

− tanh

(|𝑥+ 0.4|2 + |𝑦|− 0.15√
5𝜖

)
− tanh

(|𝑥− 0.4|2 + |𝑦|− 0.15√
5𝜖

)
,

𝑢(𝑥, 𝑦,0) = −𝑦, 𝑣(𝑥, 𝑦,0) = 𝑥, 𝑝(𝑥, 𝑦,0) = 0, 𝑇 (𝑥, 𝑦,0) = 0.

We run the simulation with the temporal step Δ𝑡 = 0.01ℎ up to time 𝑇 = 1.95. Fig. 4(a) shows the temporal evolution of shape and Fig. 4(b) shows the 
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Fig. 4. The dynamical behaviors of the droplet with complex shape under the shear flow background liquid until the indicated time 𝑇 = 1.95. (a) is the evolution of 
the phase separation. (b) is the evolution of the velocity field.

Fig. 5. The dynamical behaviors of the spinodal decomposition in a complex domain. (a) is the evolution of phase separation. (b) is the evolution of the temperature 
field.

velocity field during the evolution. It is obvious that the four droplets merged. The velocity field changes from the rotational velocity to convective 
flow fields. Meanwhile, the merged droplet has been fractured by the force of convection and surface tension.

4.5. Two-phase spinodal decomposition in an arbitrary domain

We consider the spinodal decomposition [45,46] for the coupling system in an arbitrary domain as shown in Fig. 5. The computational domain 
is Ω = [−1, 1] × [−0.7, 0.7] with a 430 × 300 mesh grid. Let us define the computational domain as Ω𝐶 , thus the blank domain can be denoted as 
Ω𝐵 =Ω∕Ω𝐶 . Here, we use the Dirichlet boundary conditions for the blank domain., i.e. 𝜙(𝑥, 𝑦) = −1, if (𝑥, 𝑦) ∈ 𝜕Ω𝐶 . The initial conditions are chosen 
as

⎧⎪⎨⎪⎩
𝜙(𝑥, 𝑦,0) =

{
rand(𝑥, 𝑦), if (𝑥, 𝑦) ∈ Ω𝐶 ,

−1, otherwise,
𝑇 (𝑥, 𝑦,0) =

{
𝑇0, if (𝑥, 𝑦) ∈ Ω𝐵,

0, otherwise,

𝑢(𝑥, 𝑦,0) = −𝑦, 𝑣(𝑥, 𝑦,0) = 𝑥, 𝑝(𝑥, 𝑦,0) = 0,

where rand() denotes a random function which generates a value from −1 to 1. We assume that the temperature of bland domain Ω𝐵 is constant, i.e. 
𝑇 (𝑥, 𝑦, 𝑡) = 𝑇0 (if (𝑥, 𝑦) ∈Ω𝐵). As can be seen in Fig. 5(a), the evolved spinodal decomposition patterns have indicated that the proposed method can 
deal with the phase separation in an arbitrary complex domain. Fig. 5(b) shows the temperature evolution of the whole system with respect to time. 
It is obvious that the temperature field has gradually evolved into a well-distributed mode from the initial distribution, which is consistent with the 
physical context.

4.6. Spinodal decomposition for Taylor-Couette cell

Let us consider the spinodal decomposition driven by shear force in a Taylor-Couette-type cell with the background flow. Here, the incompressible 
fluids are confined in the gap between two rotating cylinders [48]. The initial phase and the initial velocity field are chosen as follows:
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Fig. 6. The dynamical behaviors of the spinodal decomposition in a complex domain. From left to right, the indicated time is 𝑡 = 0.31, 11.72 and 23.44, respectively.

⎧⎪⎪⎨⎪⎪⎩
𝜙(𝑥, 𝑦,0) =

{
rand(𝑥, 𝑦) if 0.25 ≤√

𝑥2 + 𝑦2 ≤ 0.85,
0 otherwise ,

𝑢(𝑥, 𝑦,0) = −𝑦
𝑥2 + 𝑦2

, 𝑣(𝑥, 𝑦,0) = 𝑥

𝑥2 + 𝑦2
, 𝑝(𝑥, 𝑦,0) = 0, 𝑇 (𝑥, 𝑦,0) = 0,

which has been shown in Fig. 6(a) and (b), respectively. The temporal step is set as Δ𝑡 = 0.01ℎ and the other numerical parameters are chosen 
the same as in Section 4.5. The boundary of the computational domain has been marked as red lines in Fig. 6(a) and (b). The Dirichlet boundary 
condition has been used for this simulation. Fig. 6(c) shows the evolution of spinodal decomposition in the Taylor-Couette cell with binary fluids 
flow. As we expected from the initial conditions, the phases are separated away from the inner cylinder due to the difference in the velocity field.

4.7. Comparison of binary flows with different viscosity ratios based on Kelvin–Helmholtz instability

In the following subsection, we have performed three numerical tests with Boussinesq approximation to demonstrate that our model can be 
directly converted into Boussinesq flow for simulation. First, we investigate the formation of the Kelvin–Helmholtz (KH) instability with the proposed 
method. The KH instability occurs between binary fluids when there is a sufficiently large velocity difference [19]. The Kelvin–Helmholtz instability 
can be used to simulate various natural phenomena, such as a billow cloud [50]. This unstable phenomenon is used to verify the solution of the 
incompressible NS equation. Here, we assume that the binary phases have different physical properties:

𝜌(𝜙) =
(
𝜌1 + 𝜌2

)
∕2 +

(
𝜌1 − 𝜌2

)
𝜙∕2, 𝜂(𝜙) =

(
𝜂1 + 𝜂2

)
∕2 +

(
𝜂1 − 𝜂2

)
𝜙∕2,

𝑐(𝜙) =
(
𝑐1 + 𝑐2

)
∕2 +

(
𝑐1 − 𝑐2

)
𝜙∕2, 𝑘(𝜙) =

(
𝑘1 + 𝑘2

)
∕2 +

(
𝑘1 − 𝑘2

)
𝜙∕2,

where 𝜌1 and 𝜌2 denote the densities of the two fluids, respectively, 𝜂1 and 𝜂2 denote their dynamic viscosities, 𝑘1 and 𝑘2 denote their thermal 
conductivities, 𝑐1 and 𝑐2 denote their specific heat coefficients. We use the zero Neumann boundary conditions for 𝜙, 𝜇 and 𝑇 , the periodic 
boundary conditions for 𝐮 and 𝑝. The discrete system Eq. (10) can be modified as:

𝜌∗
𝐮∗
𝑖,𝑗

− 𝐮𝑛
𝑖,𝑗

Δ𝑡
+ 𝜌∗

2
∇𝑑 ⋅

(
�̃�
𝑛+ 1

2
𝑖,𝑗

⊗

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

))
+ 𝜌∗

2
�̃�
𝑛+ 1

2
𝑖,𝑗

⋅∇

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

)

= −∇𝑑𝑝
𝑛
𝑖,𝑗 +

1
𝑅𝑒

∇𝑑 ⋅

(
𝜂

(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
∇𝑑

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖,𝑗

2

))
− 𝜎

𝜖
𝜙
𝑛+ 1

2
𝑖,𝑗

∇𝑑𝜇
𝑛+ 1

2
𝑖,𝑗

+
𝜌 (𝜙)

𝑛+ 1
2

𝑖𝑗
− 𝜌∗

𝐹𝑟
𝐠, (27a)

𝜌∗
𝐮𝑛+1
𝑖,𝑗

− 𝐮∗
𝑖,𝑗

Δ𝑡
+ 1

2
∇𝑑

(
𝑝𝑛+1
𝑖,𝑗

− 𝑝𝑛𝑖,𝑗

)
= 0, (27b)

∇𝑑 ⋅ 𝐮𝑛+1𝑖,𝑗
= 0, (27c)

𝜙𝑛+1
𝑖,𝑗

−𝜙𝑛
𝑖,𝑗

Δ𝑡
+∇𝑑 ⋅

(
𝜙
𝑛+ 1

2
𝑖,𝑗

(
𝐮∗
𝑖,𝑗

+ 𝐮𝑛
𝑖

2

))
= 1

𝑃𝑒
Δ𝑑𝜇

𝑛+ 1
2

𝑖,𝑗
, (27d)

𝜇
𝑛+ 1

2
𝑖,𝑗

=𝐺

(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
− 𝜖2Δ𝑑

𝜙𝑛+1
𝑖,𝑗

+ 𝜙𝑛
𝑖,𝑗

2
, (27e)

𝑇 𝑛+1
𝑖,𝑗

− 𝑇 𝑛
𝑖,𝑗

Δ𝑡
+ 𝜌∗𝑐

(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
𝐮
𝑛+ 1

2
𝑖,𝑗

⋅∇𝑑𝑇
𝑛+ 1

2
𝑖,𝑗

=∇ ⋅ 𝑘
(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
∇𝑑𝑇

𝑛+ 1
2

𝑖,𝑗
, (27f)

𝜌(𝜙
𝑛+ 1

2
𝑖,𝑗

) = 𝜌1𝜙
𝑛+ 1

2
𝑖,𝑗

+ 𝜌2

(
1 −𝜙

𝑛+ 1
2

𝑖,𝑗

)
, 𝜂

(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
= 𝜂1𝜙

𝑛+ 1
2

𝑖,𝑗
+ 𝜂2

(
1 − 𝜙

𝑛+ 1
2

𝑖,𝑗

)
,

𝑘

(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
= 𝑘1𝜙

𝑛+ 1
2

𝑖,𝑗
+ 𝑘2

(
1 −𝜙

𝑛+ 1
2

𝑖,𝑗

)
, 𝑐

(
𝜙
𝑛+ 1

2
𝑖,𝑗

)
= 𝑐1𝜙

𝑛+ 1
2

𝑖,𝑗
+ 𝑐2

(
1 − 𝜙

𝑛+ 1
2

𝑖,𝑗

)
,

where 𝐹𝑟 is the Froude number. Here, 𝜌1 and 𝜌2 denote the densities of the individual phase, 𝜂1 and 𝜂2 denote their specific viscosities, 𝑐1 and 
𝑐2 denote their specific heat coefficients, 𝑘1 and 𝑘2 denote their thermal conductivities, respectively. Based on the Boussinesq approximation, we 
set the background density as a constant 𝜌∗ = (𝜌1 + 𝜌2)∕2, i.e., the variation of background density is neglected. The difference between the actual 
density and 𝜌∗ contribute only to the external force term. The gravity acceleration has been denoted as 𝐠 ∶= (0, − 1). To demonstrate the dynamic 
behavior of the KH instability in two-dimensional domain, we consider the initial condition as follows:
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Fig. 7. Simulation of KH instability with different viscosity ratios: (a) 𝜂1 ∶ 𝜂2 = 1 ∶ 1, (b) 𝜂1 ∶ 𝜂2 = 1 ∶ 20, (c) 𝜂1 ∶ 𝜂2 = 1 ∶ 40. The top row shows the fluid transition and 
the bottom row shows the corresponding temperature field.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢(𝑥, 𝑦,0) = 1 + tanh
(
(𝑦− 1∕3 − 0.02 sin(2𝜋𝑥))∕(0.02

√
2)
)
− tanh

(
(𝑦+ 1∕3 − 0.02 sin(2𝜋𝑥))∕(0.02

√
2)
)
,

𝑣(𝑥, 𝑦,0) = 0, 𝑝(𝑥, 𝑦,0) = 0,

𝜙(𝑥, 𝑦,0) = −1 − tanh
(
(𝑦− 1∕3 − 0.01 sin(2𝜋𝑥))∕(2

√
2𝜖
)
+ tanh

(
(𝑦+ 1∕3 − 0.01 sin(2𝜋𝑥))∕(2

√
2𝜖)

)
,

𝑇 (𝑥, 𝑦,0) = −1 − tanh
(
(𝑦− 1∕3 − 0.01 sin(2𝜋𝑥))∕(2

√
2𝜖
)
+ tanh

(
(𝑦+ 1∕3 − 0.01 sin(2𝜋𝑥))∕(2

√
2𝜖)

)
.

During the simulation, we consider the other parameters as follows: 𝑅𝑒 = 3000, 𝐹𝑟 = 0.5 𝑘1 ∶ 𝑘2 = 10 ∶ 10 and 𝑐1 ∶ 𝑐2 = 200 ∶ 200. We demonstrate the 
results obtained with different viscosity ratios at various indicated times in Fig. 7. The unstable disturbances have been captured by our proposed 
method. We have omitted the influence of surface tension and gravity. We choose the same conditions and parameters for each row and make the 
fluid viscosity to be dominant. From Fig. 7(a) to (c), we show the results of the KH instability with different viscosity ratios: 𝜂1 ∶ 𝜂2 = 1 ∶ 1, 1 ∶ 20
and 1 ∶ 40, respectively. By comparing the results, we observe that the interfacial dynamics are suppressed with an increase in the viscosity of 
background fluid. Meanwhile, increasing the viscosity ratio reduces the growth of the disturbance and reduces the diffusion of heat.

4.8. Comparison of binary flows with different Reynolds numbers based on Rayleigh–Taylor instability

In this section, we present an example with Rayleigh–Taylor (RT) instability in a partially miscible liquid system [49]. This RT instability 
phenomenon occurs at the interface between two fluids of different densities when a small disturbance appears. The heavier fluid will fall and roll 
by gravity to form a spike structure, while the lighter fluid will float up to form a bubble [50]. To show the performance of the proposed scheme for 
interface capturing, we consider the RT instability of binary fluid flows with different Reynolds numbers, which can be used to predict the transition 
from laminar to turbulent flow. This simulation is based on the discrete system equation (Eq. (27)). The initial condition we used here is as follows:

⎧⎪⎨⎪⎩
𝜙(𝑥, 𝑦,0) = 1 + tanh

((
𝑦+ 1

3
− 0.1 sin (3𝜋𝑥)

)
∕
(
2
√
2𝜖
))

− tanh
((

𝑦+ 2
3
− 0.1 sin (3𝜋𝑥)

)
∕
(
2
√
2𝜖
))

,

𝑢(𝑥, 𝑦,0) = 𝑣(𝑥, 𝑦,0) = 0, 𝑝(𝑥, 𝑦,0) = 0, 𝑇 (𝑥, 𝑦,0) = 0.

The other parameters are as follows: 𝑃𝑒 = 1∕𝜖, 𝐹𝑟 = 0.5, Δ𝑡 = 0.01ℎ, 𝜌1 ∶ 𝜌2 = 1 ∶ 5, 𝜂1 ∶ 𝜂2 = 1 ∶ 1, 𝑐1 ∶ 𝑐2 = 200 ∶ 200 and 𝑘1 ∶ 𝑘2 = 10 ∶ 10. For 
this simulation, we apply the Neumann boundary conditions for computation. Fig. 8 shows the temporal evolution of the dynamical behavior of 
two-phase flows with different Reynolds numbers. The indicated times are 𝑡 = 0.31, 1.83 and 2.44 during the simulation, respectively. From Fig. 8(a) 
to (c), the Reynolds numbers are chosen as 𝑅𝑒 = 100, 1000, and 10000, respectively. The deformations of the different interface patterns are direct 
consequences of the complicated velocity fields. The fracture transition has appeared as the blue droplet descends because the gravity force outstrips 
the surface tension force. As can be seen from the comparison, the rolling-up of the interface is further developed with the increase of 𝑅𝑒. The 
viscosity plays a major role with a small 𝑅𝑒 and significantly suppresses the interfacial dynamics. Furthermore, we should point out that the hanging 
film phenomenon [51] has been shown at the boundaries because of the balance between the gravity and the surface tension force. It is obvious 
that our method can be directly used for the simulation of binary fluids flow with an external force.
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Fig. 8. Simulation of Rayleigh–Taylor instability with respect to different Reynolds numbers: (a) 𝑅𝑒 = 100, (b) 𝑅𝑒 = 1000, (c) 𝑅𝑒 = 10000. The images from left to 
right in each row are taken at 𝑡 = 0.31, 1.83, and 2.44, respectively.

4.9. Boussinesque flow with thermal convection

Boussinesq dynamic equation reflects that the thermal convection affects the fluid motion through the gravity term [12], which has the following 
form:
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= 0, (28c)

Here, 𝐠 ∶= (0, − 1) and 𝛼 is the coefficient of the heating effect. We should emphasize that Eq. (28) can be derived directly from Eq. (10) with 
the buoyancy term. However, the total mechanical energy of the object system is altered if the direction of motion is not orthogonal to the direction 
of buoyancy force. Because this external force is non-conservative and leads to an increase in the entropy of the system [52]. Although Theorem 1

and 2 cannot be guaranteed for Eq. (28), the proposed numerical solution is still feasible and stable for this complex situation. For this simulation, 
we consider the initial conditions as follows:⎧⎪⎪⎨⎪⎪⎩

𝜙(𝑥, 𝑦,0) = tanh
((

0.15 −
√

𝑥2 + (𝑦− 0.35)2
)
∕
(
2
√
2𝜖
))

,

𝑇 (𝑥, 𝑦,0) = 20 tanh
((

0.15 −
√

𝑥2 + (𝑦− 0.35)2
)
∕
(
2
√
2𝜖
))

,

𝑢(𝑥, 𝑦,0) = 𝑣(𝑥, 𝑦,0) = 0, 𝑝(𝑥, 𝑦,0) = 0,

where we set the temperature of the boundary as a constant, i.e., 𝑇 (𝑥, 𝑦, 𝑡) =−20 (if (𝑥, 𝑦) ∈ 𝜕Ω). We set the computational domain as Ω = [−0.4, 0.4] ×
[−0.5, 0.5] with ℎ = 1∕320 and the non-default parameters are chosen as: 𝑐1 ∶ 𝑐2 = 200 ∶ 200, 𝑘1 ∶ 𝑘2 = 10 ∶ 10. The numerical computations are 
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Fig. 9. The dynamical behaviors of the buoyancy-driven bubble. (a) and (b) are evolutions of phase separations and temperature field coupled the velocity field, 
respectively. From left to right, the indicated times are 𝑡 = 0.005, 0.16, 0.32, 0.48 and 0.60, respectively.

performed until 𝑡 = 0.60 with Δ𝑡 = 0.01ℎ. As can be seen from Fig. 9, because the temperature of the bubble is higher than that of the fluid 
equilibrium state, the heat convection has been generated inside the square cavity, which causes the bubble to move upward. It should be remarked 
that the influence of static pressure on the heat convection is not considered in the heat convection of the Boussinesq fluid, which means that we 
omit the convection caused by the static instability of the stratified fluid. Fig. 9(a) shows the phase separations of the buoyancy-driven bubble. 
Fig. 9(b) shows the evolutions of the temperature field coupled with the velocity field. It is obvious that the shape of the bubble has changed with 
respect to time due to the surface tension.

4.10. Gravity-driven flow in a porous medium

To show the performance of the proposed method in simulating a two-phase fluid flow in a more complex domain, we applied a long-time 
evolution to simulate the motions under gravity in a porous medium based on Eq. (27). Transport phenomena in a porous medium have attracted 
expensive attention due to the ability to predict the moving interfaces and complex topologies of flow physics [43]. In this section, we consider a 
general porous medium as shown in Fig. 10. The computational domain is chosen as Ω = [−0.6, 0.6] × [−1, 1] with ℎ = 1∕256. Let us define the initial 
conditions as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜙(𝑥, 𝑦,0) = − tanh
(
−max (|𝑦+ 0.75|− 0.08, |𝑥|− 0.5)∕

(√
2𝜖
))

,

𝑣(𝑥, 𝑦,0) = 5
(
tanh

(
−max (|𝑦+ 0.75|− 0.08, |𝑥|− 0.5)∕

(√
2𝜖
))

+ 1
)
∕2,

𝑇 (𝑥, 𝑦,0) = 100
(
tanh

(
−max (|𝑦+ 0.75|− 0.08, |𝑥|− 0.5) ∕

(√
2𝜖
))

+ 1
)
,

𝑢(𝑥, 𝑦,0) = 0, 𝑝(𝑥, 𝑦,0) = 0.

For this simulation, the non-default parameters are chosen as 𝐹𝑟 = 1, 𝜌1 ∶ 𝜌2 = 1 ∶ 10 and 𝑅𝑒 = 50. We use the homogeneous Neumann boundary 
conditions for the left and right sides and apply the Dirichlet boundary conditions for the both top and bottom sides. As we can see from Fig. 10(a), 
the RT instability evolved under the influence of surface tension (𝑡 = 0.73) because the initial velocity is small. Then the increasing velocity leads 
to the generation of fingers of interpenetrating fluids (𝑡 = 3.66). Under the combined influence of convection and boundary collision, the disorders 
appeared and the droplet is split into various parts (𝑡 = 7.32). Finally, the droplets with big density settle on the bottom of the porous medium 
and form an equilibrium state (𝑡 = 15.72). Fig. 10(b) shows the temporal evolution of the temperature distribution. From the results, we can see 
that the heat of the high temperature is gradually dissipated because the computational domain is not closed. This numerical test shows that our 
computational model can be effectively applied to the calculation of complex systems in porous media.

5. Conclusion

In this present work, we established an unconditionally energy stable method for the phase-field model of binary thermal fluid flows, which 
combines the incompressible NS equation, the CH equation, and the HT equation. The core problem we are concerned with is the thermal conduction 
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Fig. 10. Evolution of gravity-driven flow in a porous medium. (a) Phase separations (b) Temperature field.

in the fluid dynamic system which loosens the requirements for thermal convection and radiation in the proposed coupling system. Our coupled 
configuration adopts a unilateral manner, which focuses on the influence of the temperature field by the hydrodynamic system. We used the Crank–

Nicolson type scheme to discretize the governing equation. Our proposed method was proved to be unconditionally energy stable such that a larger 
temporal step can be used. The employed numerical scheme is both spatially and temporally second-order accurate. To solve the multiphysics 
system, we have used the projection method and biconjugate gradient method. We have performed several computational experiments to show the 
performance of our method.

The convergence test demonstrated the numerical accuracy of our proposed method quantitatively, i.e., the second-order spatial and temporal 
accuracy were obtained. The shape relaxation test and the deformation of droplets under shear flow further showed that our method is physically 
accurate for the diffusive function. The simulations of the Kelvin–Helmholtz and Rayleigh–Taylor instabilities demonstrated that the proposed 
method solves the convective problem efficiently. Furthermore, we showed that the proposed method can simulate the dynamical behavior of binary 
flows involving a large viscosity ratio and density ratio. The simulation of two-phase spinodal decomposition in an arbitrary domain demonstrated 
that we can handle robustly the problems of binary thermal flows in the complex domain. The simulations of the gravity-driven flow in the porous 
medium and the buoyancy-driven flow under the influence of heat convection showed that the proposed model is physically accurate for the 
convective heat transfer problem.

In the future work, we will consider the hybrid system with variable densities driven by the quasi-incompressible fluids flow. Following Chen et 
al. [40]’s framework, we will try to prove the energy dissipation with the Boussinesq approximation type system. Furthermore, we will couple the 
temperature field with the phase field and velocity field to consider the effects of thermal convection and radiation.
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