
Journal of Computational Physics 488 (2023) 112192
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A modified and efficient phase field model for the biological 
transport network

Qing Xia, Xiaoyu Jiang, Yibao Li ∗

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2022
Received in revised form 18 April 2023
Accepted 27 April 2023
Available online 11 May 2023

Keywords:
Energy-dissipation-rate preserving
Biological transport networks
Gradient flow
Adaption
Unconditional energy stability

This paper aims to establish the biological transport network based on the phase field 
model. In order to ensure that the topological shape is formed under the guidance of 
electrical conductivity, we generate the biological networks with sufficient information 
based on the distributions of the venation of the leaf represented by the reaction-
diffusion model. We modify the original energy of the network generating model by 
considering the auxin gradient property. By applying the gradient flow method to minimize 
the modified energy, we derive the Poisson type equation for pressure, the reaction-
diffusion type equation for the network conductance, and the Allen-Cahn type equation 
for the phase field. The proposed model is significant on the investigation of phase 
transitions by considering the gradient properties on the boundaries. We have innovatively 
added conductivity and phase-field coupling terms that inhibit perpendicular transport of 
nutrients, making it easy to generate thin branches from the trunk through this model. In 
order to obtain the second-order temporal accuracy, we take the Crank–Nicolson method 
for the governing system. To obtain the second-order spatial accuracy, we discretize the 
coupling system with the central finite difference method and linearize the nonlinear terms 
semi-explicitly to form a linear system at each time step. The discrete energy dissipation 
is provably preserved and we can use a larger time step. We apply the preconditioned 
conjugate gradient method with the multigrid method as a preconditioner to implement a 
practical algorithm with only linear algebraic complexity. The proposed algorithm is easy 
to implement and achieves a fast convergence. Various numerical tests are demonstrated 
to verify the efficiency, stability, and robustness of the proposed method.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Efficient and robust networks are the cornerstone of the industrial system for transporting the medium like energy [1], 
consumables [2], signal [3], nutrients [4], and fluids [5], which make significant sense for interaction of large scale system 
between multiple missions [6]. For organisms relying on multicellular scales system, the biological transport networks are 
essential for the connection of different organs or tissues, which is embodied in the vascular networks to transport blood 
flow with energy and nutrients and remove the metabolites through the branched network [7]. The separation into xylem 
and phloem provides the similar function for the leaf venation in plants [8]. Fast-growing attention on the development, 
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function and adaptation of the biologic transportation networks verified the significance for the natural community [9,10]. 
The complicated biological systems have treelike hierarchical structures [11], e.g., the aorta splits into increasingly smaller 
and smaller arteries all the way to capillaries, which can be recognized as the minimization of dissipation of the blood flow 
through the system [12,13]. Loop-redundant treelike structures can be understood conversely as robustness against damage 
or fluctuating needs [14,15].

The biological transport networks are traditionally studied in the optimization framework, in which the energy consump-
tion of the network is minimized under the constraint that the total material cost is constant [15]. However, the structures of 
networks in living organisms are subject to continuous adaptation, responding to various external and internal stimuli [16]. 
For instance, blood vessel systems are continuously adapting their structures to meet the changing metabolic demand of the 
tissue throughout the life of humans and animals [17], which can be observed specifically in experiments that blood vessels 
can sense the wall shear stress to adapt their diameters correspondingly [18,19]. Mathematical modeling of transportation 
networks is initially based on discrete frameworks, in particular mathematical graph theory and discrete energy optimiza-
tion [20,21]. Cai and Hu [12] proposed a discrete model which can be reformulated into a system of ordinary differential 
equations to study network dynamics. In their work, a global energy functional approach is suggested considering both 
material and metabolism costs, nevertheless the corresponding gradient flow ends up driven by the wall shear stress on the 
tube walls. Several studies appeared under the discrete framework [18,22,23], which responded only to local information 
and incorporated fluctuations in flow. However, these attempts were difficult to explain how angiogenesis and adaptation 
lead to stable and efficient capillaries [24], particularly, no clear global designing principle of such networks was present to 
guarantee their efficiency and robustness [25]. Considering that the large-scale structure of transport networks results from 
adaptive construction corresponding to continuous local requirements, Hu and Cai [26] proposed an optimization principle 
to drive the formation of biological transport networks underlies potential and common mechanisms. They considered the 
competition between the reduction of material and metabolic consumptions and the reduction of transport energy cost, 
which was proved theoretically and numerically to play a dominant role for the induction of the biological network. Then 
the generalized continuum model was composed of a spatial–temporal PDE system for a vector conductance variable and 
an elliptic equation constraint in space for a pressure-like variable [27,28].

− ∇ · ((r(x)I + m ⊗ m)∇p) = S, (1a)

∂m

∂t
− K�m − C (m · ∇p)∇p + α|m|2(γ −1)m = 0. (1b)

We denote the conductance vector as m(t, x) ∈ �, where the tissue domain � is a bounded domain with a smooth boundary 
∂�. The direction of m stands for the direction of active transport and the amplitude |m| quantifies the transport strength. 
Let us denote p(x, t) as the pressure of the relevant hormone, r(x) as the background permeability, I as the identity matrix, 
S(x) as the distribution of the hormone source produced in the tissue, K ≥ 0 as the diffusivity parameter, C ≥ 0 as the 
activation parameter driving the network adaptation, α ≥ 0 as the metabolic constant, and γ ∈ [1/2, 1] as the metabolic 
rate of the bio-organism according to Murray’s Law [29], respectively. Let us consider the original energy cost functional EM

as

EM = 1

2

∫
�

(
K |∇m|2 + α

γ
|m|2γ + C |m · ∇p|2 + Cr|∇p|2

)
dx, (2)

where the first term K |∇m|2 is the entropy cost responsible for active transport. The second term α|m|2γ /γ shows the 
material and metabolic energy cost of maintaining the active transport or constructing the transport network edges. The 
last term 

(
C |m · ∇p|2 + Cr|∇p|2) is the average energy cost for all different states with fluctuating fluxes. This model drives 

the canalization by coupling the hormone transport and the adaptation process.
Following the continuum models, two paths were carried out for the development of biological transport networks [6]: 

one emphasized optimization of energy cost and established the theoretical framework on the existence of analytical solu-
tions. The other focused on generating the numerical adaptation mechanism by coupling the relevant stimuli and developing 
the corresponding network generating schemes. Haskovec et al. [30] proved the existence of global weak solutions and lo-
cal mild solutions. They used a geometric perturbation argument to prove the existence of nontrivial steady states, which 
implied that long term convergence of the transient solutions towards steady states. Furthermore, they extended the results 
obtained previously to the whole range of meaningful relaxation exponents by regarding the existence of weak and mild 
solutions [31]. Li [32] established the local existence of strong solutions and presented a blow-up criterion, whose global ex-
istence were rigorously proved under some smallness conditions of the initial data and the source. By applying the Dirichlet 
heat semigroup and the properties of divergence equations, the authors [33] established the existence of the steady states 
by means of dynamical methods and proved that Dirichlet-Neumann initial-boundary possesses a globally classical solution 
which is unique and uniformly bounded. Ronellenfitsch et al. [34] explored analytically and numerically the design, effi-
ciency and topology of noise-canceling networks, and provided concrete guiding principles for designing more robust and 
efficient power grids and sensor networks. The analytical solutions can be used to demonstrate the physical significance and 
provided the opportunity for the exploration at complicated cases without analytical solution. Due to the rigidity and high 
2
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nonlinearity of the biological generating system, it is difficult to find the closed form solution and provide the corresponding 
theoretical analysis under the corresponding initial values and bounds. The researchers gradually focused on the exploration 
of numerical solutions to establish the efficient and stable numerical schemes. Fang et al. [35] developed the implicit and 
semi-implicit time discretizations for the Cai-Hu model to overcome the numerical challenges including the nonlinearity and 
stiffness. Their proposed scheme was energy stable, which were proved in one dimension and verified numerically in two 
dimension. Haskovec et al. [31] applied the variational formulation based on the penalty method to construct the stationary 
solutions for the case of vanishing diffusion and critical value of the relaxation exponent. They used the numerical method 
to prove the analytical results adopted to the one dimensional setting can be valid in several space dimensions. Hong et 
al. [36,37] recast the network generating partial differential equation system into the singular limit of a dissipative gradient 
flow model and developed several structure-preserving numerical algorithms for the gradient flow model based on the en-
ergy quadratization method. Their numerical scheme preserved the dissipation rate in the discrete sense with second-order 
accurate, efficient, linear properties. Facca et al. [38] presented an extension of the Cai-Hu model that considers the time 
derivative of the conductivity, which grows as a power-law of the transport flux. Hu et al. [39] were inspired by the Cai-Hu 
model to construct the formulation of flow networks where the fluid is modeled by the Darcy-Stokes flow with the pres-
ence of volume sources. They adopted filtering techniques to design suitable objective functionals to console the challenges 
caused by the non-convex optimization property and ill–posedness.

In this paper, we aim to establish the biological transport network based on the phase field model. The phase field model 
has been shown to be adaptable in various fields, such as topology optimization [40,41], additive manufacturing [42,43], 
multi-component fluid flows [44,45], and image processing [46,47]. We will introduce the internal chemical potential energy, 
which naturally concentrates the auxin gradient property and determinate the generation of the biological network, to 
modify the original energy of Cai-Hu model. Then the complicated model, which couples the Poisson type equation for 
pressure, the reaction-diffusion type equation for the network conductance, and the Allen-Cahn type equation for phase 
field, will be derived as a gradient flow by minimizing the modified energy consumed by the system. The rigorous proof 
of the energy dissipation will be confirmed in detail. The governing system is discretized by the Crank–Nicolson method 
to maintain the second-order temporal accuracy. The spatial discretization of the coupling equations is achieved under the 
finite difference framework. We prove that the discrete energy dissipation is preserved unconditionally, which confirms 
that a larger time step can be used. In order to implement a practical algorithm with only linear algebraic complexity 
and achieve fast convergence, we apply the preconditioned conjugate gradient method with the multigrid method as a 
preconditioner. The biological network model is decoupled and the proposed algorithm is easy to implement. Comparing to 
the existing models on the investigation of biological transport network, the advantages of our phase field based method are 
summarized as follows: (i) We modified the biological network generating model to consider the auxin gradient properties, 
which plays significant role in suppressing the transport perpendicular to the phase boundaries and forming the branches 
from the trunk. The proposed model is proved to satisfy the energy dissipation, which corresponds to the physical context. 
(ii) Our numerical solutions are efficient and stable, which can achieve second-order accuracy in space and time. To solve 
the resulting system of discrete equations, we will use the multigrid preconditioned conjugate gradient method, which has 
O (N) computational complexity. The proposed method has inherent high parallelism and improves convergence of long 
wavelength components. (iii) Our discrete method is simple and easy to implement since it is completely decoupled and 
has linear algebraic computational complexity. The discrete system is proved to be unconditionally energy stable and so 
that we can use a larger time step. Several representative computational tests are demonstrated to validate the efficiency, 
stability and applicability of the proposed scheme.

The rest of the paper is organized as follows. We review the general gradient flow system. Then we modify the total 
energy and transform the original governing equations into the phase field framework in Section 2. We describe the discrete 
scheme with second-order temporal accuracy based on a Crank– Nicolson-type method and rigorously prove the discrete 
energy dissipation in Section 3. Various numerical experiments are carried out by using benchmark examples in Section 4. 
Finally, a concluding remark is presented in Section 5.

2. Methodology

In this section, we apply the variational formulation to generate the biological network PDE model. Based on the gen-
eralized Onsager principle [48], the gradient flow model is proposed with the nonlinear, time-independent equation. By 
adopting a specific chemical potential energy, i.e., Ginzburg–Landau energy [49], into the original energy function, we mod-
ify the original governing equation as the energy-dissipative biological-network-generating PDE model based on the phase 
field method. Then the investigation on the well-posedness and energy dissipation of the gradient flow model are validated 
with modified network-generating model. The relevant and compatible boundary conditions have been discussed to fit the 
corresponding physical model.

2.1. Review of the gradient flow model

By introducing an artificial time variable t, we aim to find a stationary order parameter m in the following gradient flow:

∂m

∂t
= −δEM

δm
. (3)
3
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The derivation of the conductance vector m in a gradient flow is reviewed as:(
δEM

δm
,g

)
L2

= d

dη
EM(p,m + ηg)

∣∣∣∣
η=0

=
∫
�

(
− K�m + α|m|2(γ −1)m − C(m · ∇p)∇p

)
· gdx.

The stationary order parameter p can be obtained in the following gradient flow:

S = δEM

δp
, with

∫
�

Sdx = 0, (4)

where the chemical potential δE/δp can be obtained via the variational derivative of the objective functional Eq. (2) with 
respect to p as(

δEM

δp
,q

)
L2

= d

dη
EM(p + ηq,m)

∣∣∣∣
η=0

=
∫
�

(
− C∇ · (rI + m ⊗ m)∇p

)
qdx.

Here p is the partial pressure of the relevant hormone and satisfies the Kirchoff’s laws for obtaining the flow distribution in 
the vascular network. We should remark that since the time scale of fluctuations is not comparable to that of the transport, 
we use the steady-state transport equation to avoid the reduction in the strength of fluctuations in flux. Then we derive the 
following governing equations⎧⎪⎨⎪⎩

− ∇ ·
((

r(x)I + m ⊗ m
)∇p

)
= S,

∂m

∂t
= K�m + C (m · ∇p)∇p − α|m|2(γ −1)m,

(5)

where ⊗ is the tensor product. Thus we can obtain the following energy dissipation law:

Theorem 1. The governing system Eq. (5) preserves the energy dissipation as follows:

∂EM

∂t
=

∫
�

−|mt |2dx ≤ 0. (6)

Proof. By taking the derivative formulation of the original energy Eq. (2) with respect to time and substituting Eqs. (5)
into the derivation functional, the energy dissipation can be obtained as follows:

∂EM

∂t
=

∫
�

K∇m · ∇mt + α|m|2γ −1 · m

|m|mtdx

+
∫
�

C(m · ∇p) · (mt · ∇p + m · ∇pt) + Cr∇p · ∇ptdx

=
∫
�

−K�m · mt + α|m|2(γ −1)m · mt − C(m · ∇p)∇p · mt

+ C(m ⊗ m)∇p · ∇pt + Cr∇p · ∇ptdx +
∫
∂�

K nm : ∇mt ds

=
∫
�

−mt · mt dx +
∫
∂�

K nm : ∇mt ds − C

∫
�

∇ · ((rI + m ⊗ m)∇p
)

ptdx

+
∫
∂�

Cn · (r I + m ⊗ m
) · ∇pptds

=
∫
�

−mt · mt dx +
∫
∂�

K nm : ∇mt + Cn · (r I + m ⊗ m
) · ∇pptds

=
∫
�

−|mt |2dx ≤ 0.
4
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Here the following boundary conditions have been applied as

n · ∇mt = 0, and n · (rI + m ⊗ m) · ∇p = 0, (7)

which implies additional consistency condition 
∫
�

Sdx = 0 has been used to keep the isolated property. The proof is com-
pleted. �
2.2. Phase field model coupled with the biological transport network

In this section, the phase field model for generating the biological transport network is considered. According to the 
mathematical analysis on the distributions of the venation of the leaf [50], the reaction diffusion model, which naturally 
concentrates the auxin gradient property, provides the biological networks with sufficient information to determine their 
generation. The temporal changes of the auxin concentration inside a region depend on the difference between diffusion 
and production. Let us begin with the Ginzburg-Landau energy

Eφ =
∫
�

(
F (φ)/ε2 + |∇φ|2/2

)
dx, (8)

where F (φ) = 0.25φ2(1 − φ)2, and ε > 0 is the interfacial thickness of vessel wall. The designed variable φ is allowed to 
have values in [0, 1] instead of only 0 or 1. Let us replace the hyper surface between the leaf venation and nutrient by the 
interfacial layer with thickness proportional to the small parameter ε . In order to ensure that the topological shape formed 
by the flow of nutrient can be characterized under the guidance of electrical conductivity, we add the convective term 
EC = ∫

�
|m · ∇φ|2/2dx to the energy function. By combining the metabolic cost energy with the Ginzburg-Landau energy, 

we can obtain the modified total energy as

EN = EM + Eφ + EC

= 1

2

∫
�

(
K |∇m|2 + α

γ
|m|2γ + C |m · ∇p|2 + Cr|∇p|2

)
dx

+ β

∫
�

(
F (φ)/ε2 + |∇φ|2/2

)
dx + ζ

∫
�

|m · ∇φ|2/2dx,

(9)

where we use β to be the positive penalized parameter and use positive parameter ζ to control the convective effect on the 
conductivity. From a constrained gradient flow of the energy cost functional Eq. (9), we can derive the Allen–Cahn equation, 
which has been applied in various applications as the following gradient flow:

∂φ

∂t
= −δEN

δφ
, (10)

from which we can obtain the phase field functional via variational derivative of the energy functional with respect to φ as(
δEN

δφ
,ψ

)
L2

= d

dη
EN(p,m, φ + ηψ)

∣∣∣∣
η=0

= β

∫
�

(
F ′(φ)

ε2
− �φ

)
ψdx + ζ

∫
�

(m ⊗ m)∇φ · ∇ψdx

= β

∫
�

(
F ′(φ)

ε2
− �φ

)
ψdx − ζ

∫
�

∇ · ((m ⊗ m) · ∇φ
)
ψdx + ζ

∫
∂�

(n · (m ⊗ m) · ∇φ)ψds

=
∫
�

(
β

(
F ′(φ)

ε2
− �φ

)
− ζ∇ · ((m ⊗ m) · ∇φ)

)
ψdx,

where the boundary condition n · (m ⊗ m) · ∇φ = 0 is applied. The gradients of the production, diffusion and differentia-
tion shown in tissue-specific regulatory mechanism [51] can be paired with the reaction-diffusion equation. The constant 
parameters of diffusive transport and production are used to coordinate the global information with the vein generation. 
Thus the leaf vein patterning can be obtained by the proposed gradient flow model and provides the opportunities for the 
communication between different parts of the biological tissue. The modified parameter m can be obtained in the following 
gradient flow

∂m = −δEN
, (11)
∂t δm

5
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from which we can obtain the vector-value conductance functional via variational derivative of the energy functional with 
respect to m as(

δEN

δm
,g

)
L2

= d

dη
EN(p,m + ηg, φ)

∣∣∣∣
η=0

=
∫
�

(
− K�m + α|m|2(γ −1)m − C(m · ∇p)∇p − ζ(m · ∇φ)∇φ

)
· gdx.

Thus, we can modify the original governing system (Eq. (5)) as:

∂φ

∂t
(x, t) = −β

(
F ′(φ(x, t))

ε2
− �φ(x, t)

)
(12a)

+ ζ∇ ·
((

m(x, t) ⊗ m(x, t)
)∇φ(x, t)

)
,

− ∇ ·
((

r(x)I + m(x, t) ⊗ m(x, t)
)∇p(x, t)

)
= S(x), (12b)

∂m

∂t
(x, t) = K�m(x, t) + C

(
m(x, t) · ∇p(x, t)

)
∇p(x, t) (12c)

− α|m(x, t)|2(γ −1)m(x, t) + ζ
(

m(x, t) · ∇φ(x, t)
)
∇φ(x, t).

Based on the modified system Eqs. (12), we can obtain the following energy dissipation law:

Theorem 2. The governing Eqs. (12) preserve the energy production rate as follows

∂EN

∂t
=

∫
�

−|mt |2dx +
∫
�

−|φt |2dx ≤ 0. (13)

Proof. By taking the derivative formulation of the modified energy Eq. (9) with respect to time and substituting Eqs. (12)
into the derivation functional, the energy dissipation can be obtained as follows:

∂EN

∂t
=

∫
�

K∇m · ∇mt + α|m|2γ −1 · m

|m|mt + Cr∇p · ∇pt

+ C(m · ∇p) · (mt · ∇p) + C(m · ∇p) · (m · ∇pt)dx

+
∫
�

ζ(m · ∇φ) · (mt∇φ + m∇φt) + β
F ′(φ)

ε2
φt + β∇φ · ∇φtdx

=
∫
�

−K�m · mt + α|m|2(γ −1)m · mt − C(m · ∇p)∇p · mt

+ C(rI + m ⊗ m)∇p · ∇pt − ζ(m · ∇φ)∇φ · mtdx

+ ζ

∫
∂�

K nm : ∇mtds +
∫
�

ζm ⊗ m)∇φ · ∇φtdx +
∫
�

β
( F ′(φ)

ε2 − �φ
)
φtdx

=
∫
�

−|mt |2dx +
∫
�

(
β

(
F ′(φ)

ε2
− �φ

)
− ζ∇ · ((m ⊗ m)∇φ

))
φtdx

+
∫
∂�

K nm : ∇mtds +
∫
∂�

Cn · (r I + m ⊗ m
) · ∇pptds

+
∫
∂�

ζn · (m ⊗ m) · ∇φφtds

=
∫
�

−|mt |2dx +
∫
�

−|φt |2dx ≤ 0,

where the following boundary conditions have been applied as
6
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n · ∇mt = 0, n · (rI + m ⊗ m) · ∇p = 0, and n · (m ⊗ m) · ∇φ = 0. (14)

Note that the additional consistency condition 
∫
�

Sdx = 0 should be used to keep the isolated property. The proof is com-
pleted. �

We should claim that the energy cost function introduced in Eq. (9) directly suppresses the transport perpendicular to 
the phase boundaries. However, the original energy of the network generating model is modified by considering the auxin 
gradient property, while it can insignificantly affect the vector field of m. Furthermore, the proposed energy cost function 
can help to stabilize the boundaries between different phases (venation phase and tissue phase) and improve the stability 
of numerical schemes, which can be validated numerically in the below section.

3. Numerical solutions

The numerical solution of our proposed biological transport network generating system is performed by using the 
second-order accurate spatial discretization and the second-order accurate Crank-Nicolson discretization. Let us first present 
the numerical method in two dimension, which can be extended to three dimension in a straightforward manner without 
loss of generalities. Let us discretize the bounded domain � = [0, Lx] ×[0, L y] ⊂R2 as �d = {(xi, yi) : 1 ≤ i ≤ Nx, 1 ≤ i ≤ N y}, 
where Nx and N y are even integers. Let mn

i j be the approximation to m(xi, y j, n�t), where xi = (i − 0.5)h, y j = ( j − 0.5)h, 
�t = T /Nt is the time step with the total computational time T and the number of computational time steps Nt , and 
h = Lx/Nx = L y/N y is defined as the uniform mesh size. The discrete expressions of φ(xi, y j, n�t) and p(xi, y j, n�t) are in 
the same manner. The cell vertices are located at 

(
xi+ 1

2
, y j+ 1

2

)
= (ih, jh). Let us define the discrete gradient operator as

∇dφi, j =
(

Dxφi+ 1
2 , j, D yφi, j+ 1

2

)
, (15)

where Dxφi+ 1
2 , j = (φi+1, j − φi, j)/h and D yφi, j+ 1

2
= (φi, j+1 − φi, j)/h. The discrete Laplacian operator can be defined as

�dφi, j = (
φi−1, j + φi+1, j + φi, j−1 + φi, j+1 − 4φi, j

)
/h2. (16)

Furthermore, let us define the discrete inner products and discrete norms as:

(φ,ψ)d = h2
Nx∑

i=1

N y∑
j=1

φi, jψi, j,

(∇dφ,∇dψ)d = h2
Nx∑

i=1

N y∑
j=1

(
Dxφi+ 1

2 , j Dxψi+ 1
2 , j + D yφi, j+ 1

2
D yψi, j+ 1

2

)
,

‖φ‖2
d = (φ,φ)d, ‖∇dφ‖2

d = (∇dφ,∇dφ)d ,

‖∇dm‖2
d = ‖Dxm1‖2

d + ‖D ym1‖2
d + ‖Dxm2‖2

d + ‖D ym2‖2
d .

3.1. Second-order accuracy discrete system

In order to achieve the second-order accuracy with respect to time and space, we use the standard central difference 
discretization scheme and Crank Nicolson scheme to get the governing equations:

∇d ·
((

rI + m̃n+ 1
2 ⊗ m̃n+ 1

2

)
∇d pn+ 1

2

)
= S, (17a)

mn+1 − mn

�t
= K�dmn+ 1

2 + C
(

m̃n+ 1
2 · ∇d pn+ 1

2

)
∇d pn+ 1

2 (17b)

− α‖m̃n+ 1
2 ‖2(γ −1)

d mn+ 1
2 + ζ

(
m̃n+ 1

2 · ∇dφ̃
n+ 1

2

)
∇dφ̃

n+ 1
2 ,

φn+1 − φn

�t
= − β

ε2

(
F ′ (φ̃n+ 1

2

)
+ ξφn+ 1

2 − ξ φ̃n+ 1
2

)
+ β�dφ

n+ 1
2 (17c)

+ ζ∇d ·
((

m̃n+ 1
2 ⊗ m̃n+ 1

2

)
∇dφ̃

n+ 1
2

)
,

where (·)n+ 1
2 = 0.5 (·)n+1 + 0.5 (·)n , (̃·)n+ 1

2 = 1.5 (·)n − 0.5 (·)n−1. The outline of the numerical solution for Eqs. (17) in one 
time step is as follows:

Step 1. Initialize m0, m−1, p0, p−1, φ0, and φ−1, respectively.
Step 2. Solve Eq. (17a) to get pn+1 from mn , mn−1, and pn .
7
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Let us consider ∇d ·
((

rI + m̃n+ 1
2 ⊗ m̃n+ 1

2

)
∇d pn+ 1

2

)
as

∇d ·
((

rI + m̃n+ 1
2 ⊗ m̃n+ 1

2

)
∇d pn+ 1

2

)
i, j

= 1

h

(
(m̃

n+ 1
2

1 m̃
n+ 1

2
1 + r)p

n+ 1
2

x + (m̃
n+ 1

2
1 m̃

n+ 1
2

2 )p
n+ 1

2
y

)
i+ 1

2 , j

− 1

h

(
(m̃

n+ 1
2

1 m̃
n+ 1

2
1 + r)p

n+ 1
2

x + (m̃
n+ 1

2
1 m̃

n+ 1
2

2 )p
n+ 1

2
y

)
i− 1

2 , j

+ 1

h

(
(m̃

n+ 1
2

2 m̃
n+ 1

2
1 )p

n+ 1
2

x + (m̃
n+ 1

2
2 m̃

n+ 1
2

2 + r)p
n+ 1

2
y

)
i, j+ 1

2

− 1

h

(
(m̃

n+ 1
2

2 m̃
n+ 1

2
1 )p

n+ 1
2

x + (m̃
n+ 1

2
2 m̃

n+ 1
2

2 + r)p
n+ 1

2
y

)
i, j− 1

2

= 1

h2
(m̃

n+ 1
2

1 m̃
n+ 1

2
1 + r)i+ 1

2 , j(p
n+ 1

2
i+1, j − p

n+ 1
2

i, j )

− 1

h2
(m̃

n+ 1
2

1 m̃
n+ 1

2
1 + r)i− 1

2 , j(p
n+ 1

2
i, j − p

n+ 1
2

i−1, j)

− 1

4h2
(m̃

n+ 1
2

1 m̃
n+ 1

2
2 )i− 1

2 , j(p
n+ 1

2
i, j+1 + p

n+ 1
2

i−1, j+1 − p
n+ 1

2
i, j−1 − p

n+ 1
2

i−1, j−1)

+ 1

4h2
(m̃

n+ 1
2

1 m̃
n+ 1

2
2 )i+ 1

2 , j(p
n+ 1

2
i, j+1 + p

n+ 1
2

i+1, j+1 − p
n+ 1

2
i, j−1 − p

n+ 1
2

i+1, j−1)

+ 1

h2
(m̃

n+ 1
2

2 m̃
n+ 1

2
2 + r)i, j+ 1

2
(p

n+ 1
2

i, j+1 − p
n+ 1

2
i, j )

− 1

h2
(m̃n

2m̃
n+ 1

2
2 + r)i, j− 1

2
(p

n+ 1
2

i, j − p
n+ 1

2
i, j−1)

+ 1

4h2
(m̃

n+ 1
2

2 m̃
n+ 1

2
1 )i, j+ 1

2
(p

n+ 1
2

i+1, j+1 + p
n+ 1

2
i+1, j − p

n+ 1
2

i−1, j+1 − p
n+ 1

2
i−1, j)

− 1

4h2
(m̃

n+ 1
2

2 m̃
n+ 1

2
1 )i, j− 1

2
(p

n+ 1
2

i+1, j−1 + p
n+ 1

2
i+1, j − p

n+ 1
2

i−1, j − p
n+ 1

2
i−1, j−1).

Then the resulting linear system of Eq. (17a) can be solved by applying a multigrid method [52].
Step 3. Solve the reaction diffusion equations for updating the conductance with the updated pn+1 as follows:

mn+1
1 − mn

1

�t
= K�dm

n+ 1
2

1 + C

(
m̃

n+ 1
2

1 p
n+ 1

2
x + m̃

n+ 1
2

2 p
n+ 1

2
y

)
p

n+ 1
2

x (18a)

− α|m̃n+ 1
2 |2(γ −1)m

n+ 1
2

1 + ζ

(
m̃

n+ 1
2

1 φ̃
n+ 1

2
x + m̃

n+ 1
2

2 φ̃
n+ 1

2
y

)
φ̃

n+ 1
2

x ,

mn+1
2 − mn

2

�t
= K�dm

n+ 1
2

2 + C

(
m̃

n+ 1
2

1 p
n+ 1

2
x + m̃

n+ 1
2

2 p
n+ 1

2
y

)
p

n+ 1
2

y (18b)

− α|m̃n+ 1
2 |2(γ −1)m

n+ 1
2

2 + ζ

(
m̃

n+ 1
2

1 φ̃
n+ 1

2
x + m̃

n+ 1
2

2 φ̃
n+ 1

2
y

)
φ̃

n+ 1
2

y .

We should remark that Eqs. (18a) and (18b) can be solved by a biconjugate gradient coupled with a multigrid method for 
the resulting system of discrete equations [53,54].

Step 4. Solve the Allen-Cahn type equation for updating the phase field with the updated mn+1 and pn+1 as follows:

φn+1 − φn

�t
= −β

F ′
(
φ̃n+ 1

2

)
ε2

+ β�dφ
n+ 1

2 + ζ

(
m̃

n+ 1
2

1 m̃
n+ 1

2
1 φ

n+ 1
2

x + m̃
n+ 1

2
1 m̃

n+ 1
2

2 φ
n+ 1

2
y

)
x

(19)

+ ζ

(
m̃

n+ 1
2

2 m̃
n+ 1

2
1 φ

n+ 1
2

x + m̃
n+ 1

2
2 m̃

n+ 1
2

2 φ
n+ 1

2
y

)
y
,

which can be solved by using the multigrid method.
Some notations of the proposed method should be remarked here: (i) We use two level values, i.e., φ−1 , φ0, m−1, m0, 

p−1 and p0, to initialize the computation. Let us set φ−1 := φ0, m−1 := m0 and p−1 := p0, which will not reduce the 
accuracy of the numerical scheme. (ii) The diffusion term D�m is stiff with a very small diffusion parameter D . However, 
8
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we can manipulate it implicitly to increase the stability of the system because of the linearity of the Laplacian operator. 
(iii) The metabolism term |m|2(γ −1)m is nonlinear and non-differentiable for physical relevant cases 1/2 ≤ γ ≤ 1, which is 
the metabolic rate of the bio-organism according to Murray’s Law [29]. This activation term is stiff since |m| can be close 
to zero. Numerically, we add a small positive parameter tol = 1e − 6 as the stabilizer to avoid the zero denominator. (iv) 
The activation term is stiff with a large ∇p since the activation matrix C(∇p ⊗ ∇p) has eigenvalues 0 and C |∇p|2. Using 
the currently-developed tricks for diffusion equations, such as linear penalization method, Newton iterations method, and 
Exponential Time Differencing method, will give rise to a nonlinear algebraic problem. In order to implement a practical 
algorithm with only linear algebraic complexity, we apply the preconditioned conjugate gradient method with the multigrid 
method as a preconditioner. Thus the computational complexity is O (N), where N = Nx × N y is the size of the mesh grid. 
(v) The central difference scheme is used for spatial discretization and the Crank-Nicolson type scheme is used for temporal 
discretization, which are both second-order accurate. (vi) The combination of the new decoupling method has the properties 
of linearity, unconditional energy stability and second-order accuracy, which is efficient and easy to implement.

3.2. Unconditional stability

In this subsection, we demonstrate the unconditional stability of the proposed scheme Eqs. (17). Let us define the modi-
fied energy as

Ẽd
(
φn+1, φn,mn+1, pn+1) (20)

= Ed
(
φn+1,mn+1, pn+1) + ξ − F ′′ (σ n,n+1

)
4ε2

∥∥φn+1 − φn
∥∥2

d ,

where the discrete energy Ed
(
φn,mn, pn

)
is defined as:

Ed
(
φn,mn, pn) = K

2
‖∇dmn‖2

d + α

2γ
‖mn‖2γ

d + C

2
‖mn · ∇d pn‖2

d (21)

+ Cr

2
‖∇d pn‖2

d + ζ

2
‖mn · ∇dφ

n‖2
d + β

F (φn)

ε2
+ β

2
‖∇dφ

n‖2
d,

and σ n,n+1 satisfies the following functional:(
F ′ (φ̃n+ 1

2

)
, φn+1 − φn

)
d
= (

F
(
φn+1) − F

(
φn) ,1

)
d (22)

− F ′′ (σ n,n+1
)

4

(∥∥φn+1 − φn
∥∥2

d − ∥∥φn − φn−1
∥∥2

d + ∥∥φn+1 − 2φn + φn−1
∥∥2

d

)
.

Herein, we can provide the discrete energy dissipation law.

Theorem 3. The discrete system given in Eqs. (17) preserves the energy dissipation law as follows:

Ed
(
φn+1, φn,mn+1, pn+1) − Ed

(
φn, φn−1,mn, pn)

= −‖mn+1 − mn‖2
d/�t − ‖φn+1 − φn‖2

d/�t − β
ξ − F ′′ (σ n+1,n

)
4ε2

‖φn+1 − 2φn + φn−1‖2
d ≤ 0,

where ξ is the stabilizing parameter and satisfies ξ ≥ max
(

F ′′(φ)
) = F ′′(G) with |φ| ≤ G .

Proof. Let us compute the discrete inner product of Eqs. (17a)-(17c) with δ+
t pn = (pn+1 − pn)/�t , δ+

t mn = (mn+1 −mn)/�t , 
and δ+

t φn = (φn+1 − φn)/�t , respectively:

−‖δ+
t mn‖2

d = K

2
δ+

t ‖mn‖2
d + C

(
mn+ 1

2 · ∇d pn+ 1
2 , δ+

t mn∇d p̃n+ 1
2

)
d

(23a)

+ α
(
‖m̃n+ 1

2 ‖2(γ −1)

d · m̃n+ 1
2 , δ+

t mn
)

d
−

((
mn+ 1

2 ∇dφ
n+ 1

2

)
· ∇dφ̃

n+ 1
2 , δ+

t mn
)

d
,

−‖δ+
t φn‖2

d = β

ε2

(
F ′ (φ̃n+ 1

2

)
+ ξφn+ 1

2 − ξ φ̃n+ 1
2 , δ+

t φn
)

d
(23b)

+ β
(
∇dφ

n+ 1
2 ,∇dδ

+
t φn

)
d
+ ζ

((
m̃n+ 1

2 ⊗ mn+ 1
2

)
∇dφ

n+ 1
2 ,∇dδ

+
t φn

)
d
.

By combining Eq. (23a) and Eq. (23b), we can obtain the follows:
9
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− ‖δ+
t mn‖2

d − ‖δ+
t φn‖2

d

= C
(

r∇d pn+ 1
2 ,∇dδ

+
t pn

)
d
+ K

2
δ+

t ‖mn‖2
d

+ C
(

mn+ 1
2 · ∇d pn+ 1

2 , m̃n+ 1
2 ∇dδ

+
t pn

)
d
+ C

(
mn+ 1

2 · ∇d pn+ 1
2 , δ+

t mn∇d p̃n+ 1
2

)
d

+ α
(
|m̃n+ 1

2 |2(γ −1) · mn+ 1
2 , δ+

t mn
)

d
− ζ

((
mn+ 1

2 ∇dφ
n+ 1

2

)
· ∇dφ̃

n+ 1
2 , δ+

t mn
)

d

+ β

ε2

(
F ′ (φ̃n+ 1

2

)
+ ξφn+ 1

2 − ξ φ̃n+ 1
2 , δ+

t φn
)

d
+ β

(
∇dφ

n+ 1
2 ,∇dδ

+
t φn

)
d

+ ζ
((

m̃n+ 1
2 ⊗ mn+ 1

2

)
∇dφ

n+ 1
2 ,∇dδ

+
t φn

)
d
,

where we have((
m̃n+ 1

2 ⊗ mn+ 1
2

)
∇dφ

n+ 1
2 ,∇dδ

+
t φn

)
d
−

((
mn+ 1

2 ∇dφ
n+ 1

2

)
· ∇dφ̃

n+ 1
2 , δ+

t mn
)

d

=
(

mn+ 1
2 ∇dφ

n+ 1
2 , δ+

t mn · ∇dφ̃
n+ 1

2

)
d
+

(
mn+ 1

2 ∇dφ
n+ 1

2 , m̃n+ 1
2 ∇dδ

+
t φn

)
d
.

Note that we can consider the reformulation as the following parts:(
mn+ 1

2 · ∇d pn+ 1
2 , m̃n+ 1

2 ∇dδ
+
t pn

)
L2

+
(

mn+ 1
2 · ∇d pn+ 1

2 , δ+
t mn∇d p̃n+ 1

2

)
d

=
(

mn+ 1
2 · ∇d pn+ 1

2 , m̃n+ 1
2 ∇dδ

+
t pn + δ+

t mn∇d p̃n+ 1
2

)
d

=
(

mn+ 1
2 · ∇d pn+ 1

2 , δ+
t

(
mn · ∇d pn))

d
= 1

2
δ+

t ‖mn · ∇d pn‖2
d,

and (
α‖m̃n+ 1

2 ‖2(γ −1)

d · m̃n+ 1
2 , δ+

t mn
)

d
=

(
α‖m̃n+ 1

2 ‖γ −2
d · m̃n+ 1

2 · ‖mn+ 1
2 ‖γ

d , δ+
t mn

)
d

=
(
‖mn+ 1

2 ‖γ
d ,α‖m̃n+ 1

2 ‖γ −2
d · m̃n+ 1

2 · δ+
t mn

)
d
=

(
‖mn+ 1

2 ‖γ
d , δ+

t ‖mn‖γ
d

)
d
= 1

2
δ+

t ‖mn‖2
d .

For the term 
(
(F ′

(
φ̃n+ 1

2

)
+ ξφn+ 1

2 − ξ φ̃n+ 1
2 )/ε2, δ+

t φn
)

d
, we get

1

ε2

(
F ′ (φ̃n+ 1

2

)
+ ξφn+ 1

2 − ξ φ̃n+ 1
2 , δ+

t φn
)

d

= 1

ε2

(
F ′ (φ̃n+ 1

2

)
, δ+

t φn
)

d
+ 1

ε2

(
ξφn+ 1

2 − ξ φ̃n+ 1
2 , δ+

t φn
)

d

= 1

�tε2

(
F

(
φn+1) − F

(
φn) ,1

)
d

+ F ′′ (σ n+1,n
)

4ε2

(
‖φn − φn−1‖2

d − ‖φn+1 − φn‖2
d − ‖φn+1 − 2φn + φn−1‖2

d

)
+ ξ

4ε2�t

(
‖φn+1 − φn‖2

d − ‖φn − φn−1‖2
d + ‖φn+1 − 2φn + φn−1‖2

d

)
= 1

�tε2

(
F

(
φn+1) − F

(
φn) ,1

)
d + ξ − F ′′ (G)

4ε2�t
‖φn+1 − 2φn + φn−1‖2

d .

Here, the function σ n+1,n exists because of the Taylor expansion. Since the mean value theorem of integral, there exists 
G ∈ [φn, φn+1]. Therefore, we can obtain

− ‖δ+
t mn‖2

d − ‖δ+
t φn‖2

d (24)

= K

2
δ+

t ‖mn‖2
d + C

2
δ+

t ‖mn · ∇d pn‖2
d + 1

2
Crδ+

t ‖pn‖2
d

+ α

2r
δ+

t ‖mn‖2
d + ζ

2
δ+

t ‖mn · ∇dφ
n‖2

d + β

�tε2

(
F

(
φn+1) − F

(
φn) ,1

)
d

+ 1

2
δ+

t ‖φn‖2
d + β

ξ − F ′′ (σ n+1,n
)

4ε2�t
‖φn+1 − 2φn + φn−1‖2

d .

Let us consider
10
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Ed
(

pn+1,mn+1, φn+1) − Ed
(

pn,mn, φn) (25)

=
(
Ed

(
pn+1,mn+1, φn+1) − Ed

(
pn+1,mn+1, φn))

+
(
Ed

(
pn+1,mn+1, φn)

− Ed
(

pn+1,mn, φn))
+

(
Ed

(
pn+1,mn, φn) − Ed

(
pn,mn, φn))

,

where we have the following parts:

Ed
(

pn+1,mn, φn) − Ed
(

pn,mn, φn) (26)

= C

2

(
mn ⊗ mn)(

‖∇d pn+1‖2
d − ‖∇d pn‖2

d

)
+ Cr

2

(
‖∇d pn+1‖2

d − ‖∇d pn‖2
d

)
,

and

Ed
(

pn+1,mn+1, φn) − Ed
(

pn+1,mn, φn) (27)

= K

2

(
‖∇dmn+1‖2

d − ‖∇dmn‖2
d

)
+ α

2r

(
‖mn+1‖2

d − ‖mn‖2
d

)
+ C

2

(
‖mn+1∇d pn+1‖2

d − ‖mn∇d pn‖2
d

)
+ ζ

2

(
‖mn+1∇dφ

n+1‖2
d − ‖mn∇dφ

n‖2
d

)
,

and

Ed
(

pn+1,mn+1, φn+1) − Ed
(

pn+1,mn+1, φn) (28)

= β

ε2

(
F

(
φn+1) − F

(
φn) ,1

)
d + β

2

(
‖∇dφ

n+1‖2
d − ‖∇dφ

n‖2
d

)
+ ζ

2
‖mn+1∇dφ

n+1‖2
d − ζ

2
‖mn∇dφ

n‖2
d .

By combining Eqs. (26)-(28), we get

Ed
(

pn+1,mn+1, φn+1) − Ed
(

pn,mn, φn)
= C

2

(
mn ⊗ mn)(

‖∇d pn+1‖2
d − ‖∇d pn‖2

d

)
+ Cr

2

(
‖∇d pn+1‖2

d − ‖∇d pn‖2
d

)
+ K

2

(
‖∇dmn+1‖2

d − ‖∇dmn‖2
d

)
+ α

2r

(
‖mn+1‖2

d − ‖mn‖2
d

)
+ C

2

(
‖mn+1∇d pn+1‖2

d − ‖mn∇d pn‖2
d

)
+ ζ

2

(
‖mn+1∇dφ

n+1‖2
d − ‖mn∇dφ

n‖2
d

)
+ β

·ε2

(
F

(
φn+1) − F

(
φn) ,1

)
d

+ β

2

(
‖∇dφ

n+1‖2
d − ‖∇dφ

n‖2
d

)
+ ζ

2

(
‖mn+1∇dφ

n+1‖2
d − ‖mn∇dφ

n‖2
d

)
= −‖mn+1 − mn‖2

d/�t − ‖φn+1 − φn‖2
d/�t − β

ξ − F ′′ (σ n+1,n
)

4ε2
‖φn+1 − 2φn + φn−1‖2

d ≤ 0.

Here the proof is completed. �
Remark 1. Since m is coupled with φ in Eq. (12a) and F (φ) exhibits quartic growth at infinity, we cannot prove analytically 
that φ is bounded. However, we should point out that φ can be verified to be bounded numerically with the initial condition 
φ0 ∈ [0, 1]. Meanwhile, considering that the original Allen-Cahn equation is restricted to satisfy the maximum principle 
according to the existing discussions, we assume that there exists G , which is not-significantly larger than 1, to satisfy 
φ ≤ G .

There are also other efficient algorithms, such as the iterative threshold dynamics method [55], invariant energy quadra-
tization method [56,57], scalar auxiliary variable method [58], to solve the reaction-type model. Our proposed method 
performs a straightforward strategy to prove the energy dissipation law. Furthermore, in order to match the theoretical 
proof of energy dissipation, we adopt the above algorithm. We should take some notations: (i) We provide a novel the-
oretical proof for the modified model coupled with the phase field, and guarantee the corresponding energy functional 
conservation. (ii) Our semi-implicit discrete algorithm is composed by several linear equations, which can be solved by 
using several fast numerical procedures with linear algebraic computational complexity.
11
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Fig. 1. Temporal evolution of the non-increasing energy of the proposed model. Note that the modified energy has been normalized by the initial energy. 
The inset figures are the morphology of phase field φ in the L2 space at specific times t = 0, 12.5, 25, 50, and 100, respectively.

4. Numerical experiments

Several numerical tests have been performed such as the energy dissipation test, stability test, the convergence test, 
the comparison test with different initial conditions of conductivity, and three dimensional test. Throughout this paper, we 
choose the computational domain as � = [−1, 1] × [−1, 1] with a 512 × 512 mesh-grid and use the following parameters 
for the numerical simulations: ε = 5h/(4

√
2atanh(0.9)), r = 0.1, C = 502, K = 0.0052, α = 1, γ = 0.75, β = 0.01, ζ = 0.05, 

ξ = 0.5 and �t = 0.8h.

4.1. Non-increasing discrete energy test

We study the temporal evolution of the normalized discrete energy Ed(φn)/Ed(φ
0). The initial conditions are chosen as 

follows:

φ(x, y,0) = 0.5 − 0.5 tanh

⎛⎜⎝
(
|y − x| − 0.075, |x − y| − 0.075

)
2
√

2ε

⎞⎟⎠ , (29a)

m (x, y,0) =
(

0.5φ(x, y,0) (4 − |x| − |y|) ,0.2φ(x, y,0) (4 − |x| − |y|)
)
, (29b)

p (x, y,0) = 0, S(x, y,0) = 1 − tanh

(√
(y − 0.15)2 + (x − 0.15)2 − 0.15

2
√

2ε

)
. (29c)

The procedure has been applied until T = 100. The inset figures are the morphology of the phase field at indicated times 
t = 0, 12.5, 25, 50, and 100, respectively. The modified total energy has been normalized by the initial energy. The results 
shown in Fig. 1 suggest that the discrete total energy has decayed unconditionally. As can be seen from the evolution of the 
generating process, the leaf shape is formed under the influence of the diffusion of electrical conductivity on the trunk. The 
tree-like biological network has generated while branches are formed from the trunk and the ablations appear on the tissue 
between the branches. We note that the subfigures in Fig. 1 demonstrate the stationary results of the biological network, 
which keeps the structure when further evolving. We have used the same initial conditions as Eqs. (29) and plotted the 
contour figures results in Fig. 2 to show the L2 norm of different physical properties, such as conductance vector m, fluid 
velocity v in the log scale, and the gradient of pressure ∇p, respectively. We introduced the coupled term (m · ∇φ)∇φ

in to the governing equations, which can help to stabilize the boundaries between venation phase and tissue phase and 
improve the stability of numerical schemes. As can be seen from Fig. 2(a), the leaf venation grows as the fluid spreads, 
and finally achieves a tree-like structure. By considering Fig. 2(b), we can see that the velocity value of venation phase is 
larger than that of tissue phase, which is influenced by the osmotic pressure on phase boundary as shown in Fig. 2(c). 
The coupling term directly suppress the transport perpendicular to the phase boundaries, while has less influence on the 
internal transmission.
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Fig. 2. From (a) to (c), the results are the L2 norm of conductance vector m, the L2 norm of fluid velocity v in the log scale, and the L2 norm of the 
gradient of pressure ∇p at the final time of Fig. 1, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Fig. 3. The dynamical behaviors of ‖∇p‖L2 with the original model Eqs. (5)(Top row) and the modified model Eqs. (12)(Bottom row). From (a) to (c), the 
results are the contour figures of ‖∇p‖L2 captured at the indicated times 12.5, 50, and 100, respectively. (d) is the close view of (c).

4.2. Effect of the phase boundaries

The coupling term composed by m and φ in the governing Eqs. (12) is directly suppress the transport perpendicular to 
the phase boundaries. Considering that the pressure variable p is a passive quantity [59] caused by the dynamical behaviors 
of the conductance m, whose gradient ∇p coincides with the transport direction perpendicularly to the phase boundary. 
Furthermore, the modulus of ∇p indicates how strongly the tissue passes through the boundaries. In order to demonstrate 
the inhibition caused by the introduced phase field, we design a comparison numerical test to consider the norm of the 
interfacial pressure gradient of the original model Eqs. (5) and the modified model Eqs. (12) respectively. The contour results 
of ‖∇p‖L2 in the two cases at different indicated times 12.5, 50, and 100 are shown in Fig. 3. As can be seen, under the 
inhibition effect brought by performing the phase field coupling term, the norm of ∇p becomes large, which implies that it 
is difficult for the venation to cross phase boundaries. In other words, the introduction of phase field model makes branches 
easier to be formed from the trunk.

4.3. Stability test

Since our model contains the strong nonlinear term and high order spatial derivatives, i.e. the convention term and 
the chemical potential term respectively, the explicit time scheme results in severe time-step restrictions for stability. To 
demonstrate the stability of our proposed scheme, we perform the numerical experiment with �t = 5, 0.5, 0.05 and 0.005, 
respectively. The initial conditions are set as
13
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Fig. 4. Temporal evolution of the energy functional of the proposed model with four time step sizes of �t = 5, 0.5, 0.05, and 0.005 until T = 100, 
respectively. Note that the modified energy has been normalized by the initial energy. The inset figures are the morphology of the phase field φ in the L2

space at specific times t = 0, 20, 40, 60, 80, and 100, respectively. The subfigures are obtained with �t = 5.

Fig. 5. The dynamical behaviors of the phase field with the same initial conditions of Eqs. (30). From left to right, the indicated times are 20, 60, and 100, 
respectively. The top slice (z = 1) and bottom slice (z = 0) of every sub figures are the supremum and infimum of phase field.

φ(x, y,0) = 1 − tanh

(√
(y − 0.15)2 + (x − 0.15)2 − 0.15

2
√

2ε

)
, (30a)

m1(x, y,0) = φ(x, y,0), m2(x, y,0) = 0.5φ(x, y,0), (30b)

S(x, y,0) = φ(x, y,0), p(x, y,0) = 0. (30c)

The chosen parameters are the same as those in Section 4.1. As can be seen from Fig. 4, we compare the temporal evolution 
of the total energy with four different time steps �t = 5, 0.5, 0.05 and 0.005 until t = 100. It is obvious that the four energy 
curves decay unconditionally and no blow-up of the numerical solutions occur, which indicate that the large time steps can 
be used for the investigation of our method. Furthermore, we can obviously see that the results with �t = 0.05 are in good 
agreement with results obtained by using �t = 0.005 while differ from the results with the larger time step �t = 5. As can 
be seen from this figure, using the small time step can obtain more accurate results than those with large time step since 
large truncation errors of the numerical solutions cannot be avoided. Thus, in order to obtain the higher accurate numerical 
solutions, a small time step should be used for further computation. In this paper, we suggest performing the numerical 
scheme with an appropriate value �t = 0.005 to maintain our proposed scheme’s accuracy and reduce computational costs. 
The inset figures in Fig. 4 are the morphology of the phase field with �t = 5 at indicated times 0, 20, 40, 60, 80, and 
100, respectively. As can be seen from the evolution of the network generation, the diffusion effect is dominant in the 
early stage of energy dissipation. The cross term plays the dominant role in the process of gradual stabilization with the 
nutrients ablation between the branches to ensure network connectivity. The evolution of the network generation indicates 
that the numerical solutions are convergent and the large time steps can be used. In order to demonstrate that the phase 
field is bounded, we have captured the contour figure of the dynamical behaviors with the same initial conditions of Eqs. 
(30) at the indicated times 20, 60, and 100, respectively. We have added the top slice (z = 1) and bottom slice (z = 0) in 
the subfigures to show the supremum and infimum of phase field. As can be seen from the results, the introduced phase 
variables are indeed bounded, which corresponds to our expectations (see Fig. 5 for the dynamical behaviors of the phase 
field with the same initial conditions of Eqs. (30)).
14
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Table 1
Errors and convergence rates with different time steps for the conductance m1 and m2, pressure p and 
phase field φ.

�t Error Order

m1 m2 p φ m1 m2 p φ

1.6e − 4 6.342e − 04 5.162e − 04 4.153e − 04 8.819e − 04 − − − −
8.0e − 5 1.506e − 04 1.155e − 04 1.072e − 04 1.951e − 04 2.07 2.16 1.95 2.18
4.0e − 5 3.906e − 05 2.731e − 05 2.546e − 05 4.753e − 05 1.95 2.08 2.07 2.04

Table 2
Errors and convergence rates with different spatial steps for the conductance m1 and m2, pressure p, 
and phase field φ.

N Error Order

m1 m2 p φ m1 m2 p φ

128 8.572e − 03 7.273e − 03 6.249e − 03 7.114e − 03 − − − −
256 2.021e − 03 1.749e − 03 1.416e − 03 1.635e − 03 2.08 2.06 2.14 2.12
512 5.384e − 04 4.224e − 04 3.139e − 04 4.202e − 04 1.92 2.05 2.17 1.96

4.4. Convergence test

In order to examine the numerical accuracy of the proposed method, we perform the following Euler method in domain 
� = [0, 2] × [0, 2]. Since no closed-form analytical solution exists for the proposed method, we denote the following refer-
ence solution φref , mref

1 , mref
2 and pref , which can be obtained by the fine time step or the fine grid size for the investigation 

of spatial accuracy and temporal accuracy, respectively. Let us set the initial conditions as follows:

φ(x, y,0) = sin(πx) cos(π y), p(x, y,0) = cos(πx) sin(π y),

m1(x, y,0) = sin(πx) sin(π y), m2(x, y,0) = cos(πx) cos(π y),

S(x, y,0) = 1 − tanh

(√
(y − 0.15)2 + (x − 0.15)2 − 0.15

2
√

2ε

)
.

The homogeneous Neumann boundary conditions have been applied for the convergence test. We first use the decreasing 
temporal steps as �t = 1.6e-4, �t = 8.0e-5, and �t = 4.0e-5 with the fine spatial size h = 1/512, respectively, to investigate 
the second-order temporal accuracy. Let us define the reference solutions as the results obtained by using �t = 1.0e-5, 
which indicates that the numerical error is defined as ei,�t := φi,�t − φref

i . Thus the convergence rate can be defined as 
log2(||ei,�t ||2/||ei,�t/2||2). The numerical error and convergence rate have been listed in Table 1, which indicates numerically 
that our proposed method has second-order temporal accuracy corresponding to system Eqs. (17). Then we perform the 
fixed temporal step size �t = 1.0e-5 to investigate the spatial convergence rate until T = 0.1. Let us consider the decreasing 
spatial steps as h = 1/128, h = 1/256, and h = 1/512, respectively. Let us define the spatial error as ei,h := φi,h − φref

i and 
define the spatial convergence rate as log2(||ei,h||2/||ei,h/2||2), where the reference solution is obtained by using the fine 
space grid size h = 1/1024. The numerical errors and spatial convergence results are listed in Table 2, which indicate that 
our proposed method is second-order accurate in space.

4.5. Presentation of various classical biological network generation

In this subsection, we perform the comparison test with different initial conditions to verify the influence of initial 
conditions on the generation of biological neural networks. The value of m1 for three comparative experiments is set to be 
the same with the different values of m2. The initial conditions are chosen as follows:

φ(x, y,0) = 2 − 0.5 tanh
((

|x − 0.5| + (y − 0.25)2 − 0.03
)

/
√

5ε
)

− 0.5 tanh
((

(x − 0.25)2 + |y − 0.5| − 0.03
)

/
√

5ε
)

− 0.5 tanh
((

|x − 0.5| + (y − 0.75)2 − 0.03
)

/
√

5ε
)

− 0.5 tanh
((

(x − 0.75)2 + |y − 0.5| − 0.03
)

/
√

5ε
)

S(x, y,0) = 1 − tanh

((√
(y − 0.5)2 + (x − 0.5)2 − 0.15

)
/2

√
2ε

)
,

m1(x, y,0) = φ(x, y,0), p(x, y,0) = 0,
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Fig. 6. Schematic illustration of the initial conditions. (a) is the initial conductance m1(x, y,0). (b) is the source term S(x, y).

Fig. 7. Temporal evolution of ‖m‖L2 , ‖v‖L2 , and the discrete energy with different values of m2. Note that the modified energy has been normalized by the 
initial energy.

m2a(x, y,0) = 0, m2b(x, y,0) = 0.5φ(x, y,0), m2c(x, y,0) = φ(x, y,0),

which can be shown in Fig. 6. Before we proceed the investigation on the comparative tests, let us define another variable 
of interest in the model as the volumetric flux v, which is proportional to the flow velocity in the biological tissue and can 
be defined by v = −(rI + m ⊗ m)∇p. The long-time behavior of the solutions has been shown in Fig. 7. The first column 
demonstrates the norm of the conductance m, the second column demonstrates the norm of the volumetric flux v, and the 
last column demonstrates the energy dissipation of the total energy by the proposed method. As can be seen from the last 
column, the normalized total energy is decreasing. It is obvious that the adjustment of initial condition will only influence 
the degree of energy dissipation rather than the trend of unconditional dissipation. Furthermore, we can see that there are 
bifurcations only at the boundary of the capillary duct and differences at the junction of the branches. We note that the 
difference of the initial m can lead to an anisotropic distribution of conductivity, which is concentrated on the location of 
16
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Fig. 8. The morphology of the phase field during the generation of biological transport network in three dimension. From (a) to (d), the indicated times are 
t = 5, 10, 20 and 40, respectively.

Fig. 9. Temporal evolution of the non-increasing modified total energy of the proposed model. Note that the modified energy has been normalized by the 
initial energy. The inset figures are the slices (x = 0, y = 0, z = 0) of the optimal design results at the indicated times t = 0, 5, 10, 20 and 40, respectively.

the source term. We have to emphasize that the initial value should not have drastic effects on the generation of biological 
networks, except for minor changes in the capillary channels.

4.6. Three dimensional test

In this subsection, we apply the phase field based biological network generation procedure in three dimension as shown 
in Fig. 8. The computational domain is chosen as � = [−1, 1] × [−1, 1] × [−1, 1] with the 128 × 128 × 128 mesh grid. The 
initial conditions are chosen as

φ(x, y,0) = 0.5 − 0.5 tanh

⎛⎜⎝
(
|x − y| − 0.075, |y − z| − 0.075, |z − x| − 0.075

)
2
√

2ε

⎞⎟⎠ ,

m (x, y,0) = (5,2,1)φ(x, y,0)
(

4 − |x| − |y| − |z|
)
, p (x, y,0) = 0,

S(x, y,0) = 1 − tanh

(√
(x − 0.15)2 + (y − 0.15)2 + (z − 0.15)2 − 0.12

2
√

2ε

)
.

As can be seen from Fig. 8(a) to (d), we demonstrate the dynamical behaviors of the biological generation network in three 
dimension space at indicated times t = 5, 10, 20, and 40, respectively. It is obvious that the thin fibers have been detached 
from the trunk to reconfigure the transport network. Furthermore, we demonstrate the evolution of the non-increasing 
energy in three dimensional space in Fig. 9. We should emphasize that the modified energy has been normalized by the 
initial energy. The inset subfigures show the slices (x = 0, y = 0, z = 0) of the optimal design results at the indicated times 
t = 0, 5, 10, 20 and 40, respectively. It can be seen from Fig. 9 that the total energy reaches a steady state at t = 20
and keeps non-increasing, which confirms that the proposed method is stable and works well for the biological network 
generation in three dimensional domain.
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5. Conclusion

In this paper, we established the biological transport network system based on the phase field model. The energy cost 
functional is revised by considering the auxin gradient property. We modified the original energy of Cai-Hu model by 
adding the internal chemical potential energy into the network generating system. The revised energy function improves
the stability of the boundary between different phases while insignificantly affect the vector field of the conduct vector m. 
Then we derived the complicated model with a gradient flow system by minimizing the modified energy. This phase-field 
based network generating model coupled the Poisson type equation for pressure, the reaction-diffusion type equation for the 
network conductance, and the Allen-Cahn type equation for phase field. We have rigorously proved the energy dissipation 
law with continuum functionals. In order to obtain the second-order temporal accuracy, we applied the Crank-Nicolson-type 
method for the governing system. Although we considered only semi-explicit schemes in time, our algorithm is stable for 
the stiff issues of the hybrid system. For the spatial discretization, we discretized the coupling system with the central finite 
difference method and treated the nonlinear terms semi-explicitly to form a linear system at each time step, which can be 
solved by a multigrid method. The discrete energy dissipation was proved rigorously which confirms that a large time step 
can be used with the unconditional stability of the implicit solver. We applied the preconditioned conjugate gradient method 
with the multigrid method as a preconditioner to implement a practical algorithm with only linear algebraic complexity and 
achieve fast convergence. The discretized system for the phase-field based model was decoupled, linear, and unconditional 
stable and the proposed algorithm was easy to implement. We note that the proposed scheme can serve as a building block 
to design accurate and stable linear schemes for a class of gradient flow problems with high degree of nonlinearity. Various 
numerical tests were demonstrated to validate the efficiency, stability and robustness of the proposed scheme.
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