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A B S T R A C T

Accurately simulating the interplay between fluids and surfactants is a challenge, especially
when ensuring both mass conservation and guaranteed energy stability. This study proposes
a highly accurate numerical scheme for the water–oil–surfactant system coupled with the
Navier–Stokes equation. We use the second-order accurate discrete operators on triangular grids
representing these surfaces. We use the Crank–Nicolson method to achieve the second-order
temporal accuracy. To handle high-order nonlinearities, we employ the consistency-enhanced
Scalar Auxiliary Variable method. Additionally, the projection method tackles the Navier–
Stokes equations. These techniques guarantee the unconditional stability. Consequently, larger
time steps are permissible. Our method achieves the high accuracy with lower computational
cost. This efficiency stems from solely utilizing surface information, eliminating the need
for calculations across the entire 3D space. The proposed scheme’s accuracy, stability, and
robustness can be confirmed through various numerical experiments.

. Introduction

Surfactants play vital roles across various domains, from everyday applications to advanced fields like medicine [1], chemical
ngineering [2–4], and biological sciences [5,6]. Their versatility stems from a unique molecular structure, characterized by a
ydrophilic (water-attracting) group at one end and a hydrophobic (water-repelling) group at the other. When introduced into
ultiphase systems, surfactants significantly alter the dynamic between oil and water [7,8]. The hydrophilic end is drawn to water
olecules, while the hydrophobic end seeks refuge within the oil phase [9,10]. This affinity allows surfactants to lower surface

ension, enabling easier mixing and formation of stable oil-in-water emulsions [11]. Despite their widespread use and importance,
ccurately modeling and numerically simulating systems involving surfactants pose significant challenges [12]. The intricacies of
nteractions between surfactants, oil, and water, along with the dynamic nature of multiphase systems, make it difficult to develop
recise computational models [13]. Additionally, the introduction of highly accurate and unconditionally energy-stable numerical
chemes further complicates the task, requiring sophisticated algorithms and computational resources to tackle the complexities
nvolved.

The phase field paradigm has been extensively harnessed to simulate fluid–surfactant interactions. The Cahn–Hilliard (CH)
ormulation [14] serves as a cornerstone for a growing volume of research in this domain [15–18]. Pioneering work by Laradji
t al. [19] marked the initial application of the phase field methodology to encapsulate the dynamics of microemulsion systems.
ubsequent studies, such as those by van der Graaf and Samn [20], delved into diffuse interface models, focusing on phenomena
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like droplet fragmentation and surfactant adsorption. Teng and Chern [21] advanced this field by formulating a phase field
model that analyzed steady-state solutions for one-dimensional planar interfaces in the presence of surfactants. Zhu et al. [22]
further addressed the complexity of the phase-field surfactant system by innovatively employing multiple scalar auxiliary variables
(SAVs) to reformulate the governing equations. This approach led to a decoupled numerical methodology that guarantees energy
stability. Building on this foundation, Xu et al. [23] introduced a stabilized-SAV numerical approach tailored for binary fluid–
surfactant systems. This approach offered both second-order temporal precision and unconditional energy stability. Inspired by this
framework, Yang et al. [24,25] developed a linear, decoupled scheme for the phase-field surfactant model. When combined with
the Stabilized-SAV (S-SAV) method, this scheme was proven to uphold unconditional energy stability.

Simultaneously, numerous researchers have endeavored to couple the incompressible Navier–Stokes (NS) equations with the
ater–oil–surfactant system. Kim et al. [26] developed a fully implicit scheme with second-order accuracy for the Cahn–Hilliard–
avier–Stokes (CHNS) system. A multigrid iterative solver and the projection method [27] are employed to tackle the nonlinear

erms and separate the pressure term, respectively. Zhu and Chen [28] developed several semi-explicit schemes for systems that
nvolve multiphase with surfactants coupled with incompressible fluid flows. With the first-order scheme, they demonstrated its
nconditional energy dissipation. Olshanskii et al. [29,30] developed a trace finite element method and introduced a Lagrange
ultiplier to ensure tangential vector field constraints on surfaces. Wang et al. [31] recently introduced an innovative energy-stable
onlinear scheme designed to address the fluid surfactant model with a moving contact line. Sun considered the curvature effects to
ntroduce a binary fluid–surfactant phase field model [32] and investigated its impact on the dynamics of phase separation in the
ystem. Pan et al. [33] solved the numerical approximation problem of binary surfactant phase field models on complex surfaces
sing the IGA-EIEQ method, which provides linearity, decoupling, unconditional energy stability, and second-order time accuracy.
urthermore, Sun et al. [34] coupled the NS equation with the established fluid–surfactant model and demonstrated its first-order
nconditional energy stability. Huang et al. [35] addressed the challenges of conditional stability and numerical stiffness caused
y small interfacial parameters in the evolving surface binary fluid–surfactant phase field model by employing stabilizing methods
nd an adaptive time-stepping technique. In [36], Xia et al. examined a comprehensive phase field model for fluid flow on curved
urfaces. They integrated the temperature field into recent systems and implemented a second-order unconditionally stable scheme
n [37]. Nonetheless, there remains a paucity of research concerning high-order stable schemes that couple NS equations with
luid–surfactant phase field models on curved surfaces.

This study presents an efficient numerical scheme to simulate the intricate evolution of a binary fluid–surfactant system on curved
urfaces. This scheme achieves high accuracy and unconditional stability. We achieve this by coupling the well-established water–
il–surfactant system, describing fluid mixing, with the Navier–Stokes (NS) equations, governing fluid flow. The Crank–Nicolson
ethod ensures second-order accuracy in time. Discretization is performed using the recently developed consistency-enhanced Scalar
uxiliary Variable (SAV) method [38]. This method is transformed into a readily solvable linear system using the Picard iteration

echnique. Importantly, these discrete systems are proven to be unconditionally stable, allowing for larger time steps in simulations.
he proposed method stands out from alternatives by achieving high accuracy with minimal computational cost. This efficiency is
chieved by utilizing only surface information, eliminating the need for calculations throughout the entire 3D space. Consequently,
arger time steps are permissible. The effectiveness of our model is validated through various numerical experiments, showcasing
ts practicality and significance. The main contributions can be summarized as the following:

• We present the second-order unconditionally energy stable schemes based on the scalar auxiliary variable method for the
fluid–surfactant computation on arbitrary surfaces.

• We prove the unconditional energy stability of the proposed method to validate that a larger time step can be used for the
convergent solution.

• The defined discrete operator on the surface mesh is closed and the proposed numerical algorithm is readily implementable.

The remaining sections of this article are structured as follows: In Section 2, we develop a fluid–surfactant model applicable to
rbitrary curved surface. Section 3 gives a comprehensive exposition of our scheme. Section 4 presents a multitude of computational
ests. The paper concludes in Section 5.

. Fluid–surfactant system on arbitrarily curved surfaces

To establish notations, we denote the inner product between functions 𝜙(𝐱) and 𝜓(𝐱) as (𝜙(𝐱), 𝜓(𝐱))𝑆 = ∫𝑆 𝜙(𝐱)𝜓(𝐱)d𝐱 and the
orm of function 𝜙(𝐱) as ‖𝜙(𝐱)‖2𝑆 = (𝜙(𝐱), 𝜙(𝐱))𝑆 , where 𝑆 ⊂ R3 represents a fixed curved surface. We will examine the dimensionless
ystem for fluid–surfactant, which is composed of water–oil–surfactant system and the Navier–Stokes equations, on 𝑆 as:

𝜕𝑡𝜙(𝐱, 𝑡) + ∇𝑆 ⋅ (𝜙(𝐱, 𝑡)𝐯(𝐱, 𝑡)) =𝑀𝜙𝛥𝑆𝜇𝜙(𝐱, 𝑡), (1a)
𝜇𝜙(𝐱, 𝑡) = 𝐹 ′(𝜙(𝐱, 𝑡)) − 𝜀2𝛥𝑆𝜙(𝐱, 𝑡)

+ 𝜀
(

𝜃∇𝑆 ⋅ (𝜓(𝐱, 𝑡)∇𝑆𝜙(𝐱, 𝑡)) − 𝜉∇𝑆 ⋅ (|∇𝑆𝜙(𝐱, 𝑡)|2∇𝑆𝜙(𝐱, 𝑡))
)

, (1b)

𝜕𝑡𝜓(𝐱, 𝑡) + ∇𝑆 ⋅ (𝜓(𝐱, 𝑡)𝐯(𝐱, 𝑡)) =𝑀𝜓𝛥𝑆𝜇𝜓 (𝐱, 𝑡), (1c)

𝜇𝜓 (𝐱, 𝑡) = 𝐺′(𝜓(𝐱, 𝑡)) − 𝛾2𝛥𝑆𝜓(𝐱, 𝑡) −
𝛾𝜃
2
|∇𝑆𝜙(𝐱, 𝑡)|2, (1d)

𝜕𝑡𝐯(𝐱, 𝑡) +
1
(

∇𝑆 ⋅
(

𝐯(𝐱, 𝑡)⊗ 𝐯(𝐱, 𝑡)
)

+ 𝐯(𝐱, 𝑡) ⋅ ∇𝑆𝐯(𝐱, 𝑡)
)

2

2
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= −∇𝑆𝑝(𝐱, 𝑡) + ∇𝑆 ⋅ (𝜈∇𝑆𝐯(𝐱, 𝑡)) −
𝜎
𝜀
𝜙(𝐱, 𝑡)∇𝑆𝜇𝜙(𝐱, 𝑡) −

𝜎
𝛾
𝜓(𝐱, 𝑡)∇𝑆𝜇𝜓 (𝐱, 𝑡), (1e)

∇𝑆 ⋅ 𝐯(𝐱, 𝑡) = 0. (1f)

ere ∇𝑆 , and ∇𝑆 ⋅ denote the tangential gradient and divergence operators, respectively. 𝛥𝑆 and ⊗ denote the tangential Laplace–
Beltrami operator and tensor product, respectively. The phase field variable 𝜙(𝐱, 𝑡) represents the local component distribution
within the binary fluid, where a value of 1 denotes one component, and 0 denotes the other one. The variable 𝜓(𝐱, 𝑡) indicates the
concentration of the surfactant, ranging from 0 to 1. 𝜇(𝐱, 𝑡) and 𝑝(𝐱, 𝑡) represent the chemical potential and the pressure, respectively.
The parameter 𝜈 denotes the viscosity. Due to the incompressible condition, which implies that ∇𝑆 (𝐯⊗ 𝐯) = 𝐯 ⋅∇𝑆𝐯 when ∇𝑆 ⋅ 𝐯 = 0,
we derive the nonlinear advection term using formulation 𝐯 ⋅ ∇𝑆𝐯∕2 + ∇𝑆 (𝐯⊗ 𝐯)∕2. This equivalent substitution proves convenient
for demonstrating energy dissipation while mitigating the stiffness effects introduced by the convection terms. Furthermore, the
dimensionless parameters 𝜀 and 𝛾 represent the interface width between two phase-field variables, 𝑀𝜙 and 𝑀𝜓 denote the mobility
parameters, respectively. Additionally, 𝜎 represents the surface tension coefficient, and 𝜉 and 𝜃 denote the intensities of coupled
entropy energy, respectively. Especially, in the context of this paper, boundary conditions have not been specified for the system,
since the focus is on fixed closed surfaces with enclosed properties. Considering the interaction between phase field variables and
surfactant [32], we define the total energy functional [36,39–41] of the binary fluid–surfactant system as:

𝐸 = ∫𝑆

(

1
2
|𝐯|2 + 𝜀𝜎

2
|∇𝑆𝜙|

2 + 𝜎
𝜀
𝐹 (𝜙) +

𝛾𝜎
2
|∇𝑆𝜓|

2 + 𝜎
𝛾
𝐺(𝜓) + 𝜎

( 𝜉
4
|∇𝑆𝜙|

4 − 1
2
𝜃𝜓|∇𝑆𝜙|

2)
)

d𝐱, (2)

here 𝐹 (𝜙) and 𝐺(𝜓) represent the double well bulk energy functions, specifically describing hydrophobic interactions with the
iven formulas 𝐹 (𝜙) = 𝜙2(1 − 𝜙)2∕4 and 𝐺(𝜓) = 𝜓2(1 − 𝜓)2∕4. In order to design an efficient numerical method, we initially define
wo auxiliary variables based on the SAV approach:

𝑟(𝑡) =
√

𝐻(𝜙, 𝜓) + 𝐶 ∶=

√

∫𝑆

(

𝜎
𝜀
𝐹 (𝜙) + 𝜎

𝛾
𝐺(𝜓) + 𝜎

( 𝜉
4
|∇𝑆𝜙|

4 − 1
2
𝜃𝜓|∇𝑆𝜙|

2)
)

d𝐱 + 𝐶.

e introduce a nonlocal variable 𝑄(𝑡), which is the solution to the following ordinary differential equation:

𝑄𝑡 = ∫𝑆

(

∇𝑆 ⋅ (𝐯𝜙)𝜇𝜙 + ∇𝑆 ⋅ (𝐯𝜓)𝜇𝜓 + 𝜙∇𝑆𝜇𝜙 ⋅ 𝐯 + 𝜓∇𝑆𝜇𝜓 ⋅ 𝐯

+ 1
2
(

∇𝑆 ⋅ (𝐯⊗ 𝐯) + 𝐯 ⋅ ∇𝑆𝐯
)

⋅ 𝐯
)

d𝐱,

𝑄|𝑡=0 = 1.

Through the utilization of Eq. (1f), the aforementioned ordinary differential equation can be deduced to be equivalent to 𝑄(𝑡) ≡ 1
via the application of integration by parts technique and leveraging the inherent property of ‘‘zero-energy-contribution’’ pertaining
to both the convection term and surface tension [42,43]. In the continuous version, this procedure is straightforward as 𝑄𝑡 is
consistently zero. Conversely, in the discrete version, such a procedure notably mitigates disturbances arising from the nonlinear
term, facilitating the demonstration of unconditional energy stability [44,45]. The original model, Eqs. (1a)–(1f), is reformulated
into the following equivalent forms

𝜙𝑡 +𝑄∇𝑆 ⋅ (𝐯𝜙) =𝑀𝜙𝛥𝑆𝜇𝜙, (3a)

𝜇𝜙 = −𝜀2𝛥𝑆𝜙 + 𝑈𝑟, (3b)

𝜓𝑡 +𝑄∇𝑆 ⋅ (𝐯𝜓) =𝑀𝜓𝛥𝑆𝜇𝜓 , (3c)

𝜇𝜓 = −𝛾2𝛥𝑆𝜓 + 𝑉 𝑟, (3d)

𝐯𝑡 +
𝑄
2
(

𝐯 ⋅ ∇𝑆𝐯 + ∇𝑆 ⋅ (𝐯⊗ 𝐯)
)

= −∇𝑆𝑝 + ∇𝑆 ⋅ (𝜈∇𝑆𝐯) −
𝑄𝜎
𝜀
𝜙∇𝑆𝜇𝜙 − 𝑄𝜎

𝛾
𝜓∇𝑆𝜇𝜓 , (3e)

∇𝑆 ⋅ 𝐯 = 0, (3f)

𝑟𝑡 =
1
2

(

𝜎
𝜀
(𝑈,𝜙𝑡)𝑆 + 𝜎

𝛾
(𝑉 , 𝜓𝑡)𝑆

)

, (3g)

𝑄𝑡 =
(

∇𝑆 ⋅ (𝐯𝜙), 𝜇𝜙
)

𝑆 +
(

∇𝑆 ⋅ (𝐯𝜓), 𝜇𝜓
)

𝑆 + 1
2
(

∇𝑆 ⋅ (𝐯⊗ 𝐯) + 𝐯 ⋅ ∇𝑆𝐯, 𝐯
)

𝑆

+
(

𝜙∇𝑆𝜇𝜙, 𝐯
)

𝑆 +
(

𝜓∇𝑆𝜇𝜓 , 𝐯
)

𝑆 , (3h)

where

𝑈 =
𝐹 ′(𝜙) + 𝜀

(

𝜃∇𝑆 ⋅ (𝜓∇𝑆𝜙) − 𝜉∇𝑆 ⋅ (|∇𝑆𝜙|
2∇𝑆𝜙)

)

√

∫𝑆

(

𝜎
𝜀
𝐹 (𝜙) + 𝜎

𝛾
𝐺(𝜓) + 𝜎

( 𝜉
4
|∇𝑆𝜙|

4 − 1
2
𝜃𝜓|∇𝑆𝜙|

2)
)

d𝐱 + 𝐶

,

𝑉 =
𝐺′(𝜓) −

𝛾𝜃
2
|∇𝑆𝜙|

2

√

(

𝜎 𝐹 (𝜙) + 𝜎 𝐺(𝜓) + 𝜎
( 𝜉

|∇𝑆𝜙|
4 − 1 𝜃𝜓|∇𝑆𝜙|

2)
)

d𝐱 + 𝐶

.

3

∫𝑆 𝜀 𝛾 4 2
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Theorem 1. The equivalent governing Eqs. (3a)–(3h) comply with the subsequent energy dissipation law

𝑑
𝑑𝑡
𝐸(𝜙, 𝜓, 𝐯, 𝑟) ≤ 0,

here

𝐸(𝜙, 𝜓, 𝐯, 𝑟) = ∫𝑆

(

1
2
|𝐯|2 + 𝜀𝜎

2
|∇𝑆𝜙|

2 +
𝛾𝜎
2
|∇𝑆𝜓|

2
)

d𝐱 + 𝑟2 − 𝐶.

roof. Taking the inner product of Eq. (3a) with 𝜎
𝜀
𝜇𝜙 and taking integration by parts and combining Eq. (3b), we can obtain

𝜎
𝜀
(𝜇𝜙, 𝜙𝑡)𝑆 =𝑄𝜎

𝜀
(𝐯𝜙,∇𝑆𝜇𝜙)𝑆 − 𝜎

𝜀
𝑀𝜙‖∇𝑆𝜇𝜙‖2𝑆

= − 𝜀𝜎(𝛥𝑆𝜙, 𝜙𝑡)𝑆 + 𝜎
𝜀
(𝑈𝑟, 𝜙𝑡)𝑆

= 𝑑
𝑑𝑡 ∫𝑆

𝜀𝜎
2
|∇𝑆𝜙|

2d𝐱 + 𝜎
𝜀
(𝑈𝑟, 𝜙𝑡)𝑆 .

(4)

Similarly, taking the inner product of Eq. (3c) with 𝜎
𝛾
𝜇𝜓 and taking integration by parts and combining Eq. (3d), we get

𝜎
𝛾
(𝜇𝜓 , 𝜓𝑡)𝑆 =𝑄𝜎

𝛾
(𝐯𝜓,∇𝑆𝜇𝜓 )𝑆 − 𝜎

𝛾
𝑀𝜓‖∇𝑆𝜇𝜓‖2𝑆

= − 𝛾𝜎(𝛥𝑆𝜓,𝜓𝑡)𝑆 + 𝜎
𝛾
(𝑉 𝑟, 𝜓𝑡)𝑆

= 𝑑
𝑑𝑡 ∫𝑆

𝛾𝜎
2
|∇𝑆𝜓|

2d𝐱 + 𝜎
𝛾
(𝑉 𝑟, 𝜓𝑡)𝑆 .

(5)

Taking the inner product of Eq. (3e) with 𝐯, we can obtain

(𝐯, 𝐯𝑡)𝑆 = −𝜈‖∇𝐯‖2𝑆 − 𝑄
2
(

𝐯 ⋅ ∇𝑆𝐯 + ∇𝑆 ⋅ (𝐯⊗ 𝐯), 𝐯
)

𝑆 − 𝑄𝜎
𝜀

(𝜙∇𝑆𝜇𝜙, 𝐯)𝑆 − 𝑄𝜎
𝛾

(𝜓∇𝜇𝜓 , 𝐯)𝑆 . (6)

y combining Eqs. (4)–(6), Theorem 1 can be derived as follows:

d
d𝑡𝐸(𝜙, 𝜓, 𝐯, 𝑟) =

𝑑
𝑑𝑡

(

∫𝑆

(1
2
|𝐯|2 + 𝜀𝜎

2
|∇𝑆𝜙|

2 +
𝛾𝜎
2
|∇𝑆𝜓|

2)d𝐱 + 𝑟2 − 𝐶
)

= − 𝜈‖∇𝑆𝐯‖2𝑆 −𝑀𝜙‖∇𝑆𝜇𝜙‖2𝑆 −𝑀𝜓‖∇𝑆𝜇𝜓‖2𝑆 ≤ 0,
(7)

which completes the proof. □

3. Numerical scheme for fluid–surfactant system on curved surface

3.1. Spatial operators on discrete surfaces

First, we present a spatial discretization approach for the proposed fluid–surfactant model on the surface. In fact, we need to
introduce the formulas for operators(such as ∇𝑆 ,∇𝑆 ⋅, and 𝛥𝑆 ) on the surface in the discrete triangular mesh, which are represented
by ∇ℎ,∇ℎ⋅, and 𝛥ℎ, respectively. For a given mesh 𝛴 ∶= (𝑋,𝐹 ) consisting of 𝑁𝑋 vertices and 𝑁𝑇 triangles, where 𝑋 = {𝐱𝑖|1 ≤ 𝑖 ≤ 𝑁𝑋}
is the set of all vertices, and 𝐹 = {𝑇𝑖|1 ≤ 𝑖 ≤ 𝑁𝑇 } is the set of all triangles. As shown in Fig. 1, we focus on a specific vertex 𝐱 ∈ 𝑋.
This vertex has a 1-ring neighborhood, denoted by the red circle, consisting of its directly connected neighboring vertices. Assuming
that 𝐱 is surrounded by 𝑠 vertices, denoted as 𝐱𝑗 (for 𝑗 = 1, 2,… , 𝑠) and 𝐱𝑠+1 = 𝐱1. Let 𝐺𝑗 = (𝐱 + 𝐱𝑗 + 𝐱𝑗+1)∕3 be the centroid of the
riangle 𝑇𝑗 with vertices 𝐱, 𝐱𝑗 and 𝐱𝑗+1. Then, as shown in Fig. 1, the green triangle is composed by the vertices 𝐱𝑗 ,𝐆𝑗 , and 𝐆𝑗+1.
he mesh formed in this way is called the dual mesh of 𝛴. Then, to achieve second-order accuracy, for any scalar-valued function
, we can define ∇ℎ𝛷(𝐆𝑗 ) as follows [36]:

∇ℎ𝛷(𝐆𝑗 ) = 𝛼𝑗 (𝐱𝑗 −𝐆𝑗 ) + 𝛽𝑗 (𝐱𝑗+1 −𝐆𝑗 ). (8)

ere 𝛼𝑗 and 𝛽𝑗 satisfy the following matrix equation:

⎛

⎜

⎜

⎜

⎜

⎝

⟨

𝐱𝑗 −𝐆𝑗 , 𝐱 −𝐆𝑗
⟩ ⟨

𝐱𝑗+1 −𝐆𝑗 , 𝐱 −𝐆𝑗
⟩

‖

‖

‖

𝐱 −𝐆𝑗
‖

‖

‖

2

⟨

𝐱𝑗 −𝐆𝑗 , 𝐱𝑗 −𝐆𝑗
⟩ ⟨

𝐱𝑗+1 −𝐆𝑗 , 𝐱𝑗 −𝐆𝑗
⟩

‖

‖

‖

𝐱𝑗 −𝐆𝑗
‖

‖

‖

2

⟨

𝐱𝑗 −𝐆𝑗 , 𝐱𝑗+1 −𝐆𝑗
⟩ ⟨

𝐱𝑗+1 −𝐆𝑗 , 𝐱𝑗+1 −𝐆𝑗
⟩

‖

‖

‖

𝐱𝑗+1 −𝐆𝑗
‖

‖

‖

2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝛼𝑗
𝛽𝑗

0.5𝛥ℎ𝛷
(

𝐆𝑗
)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

𝛷(𝐱) −𝛷
(

𝐆𝑗
)

𝛷
(

𝐱𝑗
)

−𝛷
(

𝐆𝑗
)

( ) ( )

⎞

⎟

⎟

.

(9)
4

⎝𝛷 𝐱𝑗+1 −𝛷 𝐆𝑗 ⎠
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Fig. 1. An illustration of the scheme depicting the dual mesh adjacent to the vertex 𝐱. The red point signifies a specific point 𝐱 along with its adjacent points
𝐱𝑗 within the initial grid. The blue point, 𝐺𝑖, denotes the geometric center of neighboring grids, illustrated by blue triangles. The green triangles symbolize the
composition within the dual mesh.

Utilizing the Green function, the Laplace–Beltrami operator can be approximated as follows:

𝛥ℎ𝛷(𝐱) =
1

𝐴(𝐱)

𝑠+1
∑

𝑗=1

‖

‖

‖

𝐆𝑗+1 −𝐆𝑗
‖

‖

‖

6
(

2
⟨

∇ℎ𝛷
(

𝐆𝑗
)

,𝐧𝐱
(

𝑇𝑗 ,𝐆𝑗
)⟩

+ 2
⟨

∇ℎ𝛷
(

𝐆𝑗+1
)

,𝐧𝐱
(

𝑇𝑗 ,𝐆𝑗+1
)⟩

+
⟨

∇ℎ𝛷
(

𝐆𝑗
)

,𝐧𝐱
(

𝑇𝑗 ,𝐆𝑗+1
)⟩

+
⟨

∇ℎ𝛷
(

𝐆𝑗+1
)

,𝐧𝐱
(

𝑇𝑗 ,𝐆𝑗
)⟩)

,

(10)

Here, |𝑇̂𝑗 | is the area of the triangle 𝑇̂𝑗 composed of 𝐱, 𝐆𝑗 , and 𝐆𝑗+1, represented by the red color region in Fig. 1. Additionally, the
total area 𝐴(𝐱) is given by 𝐴(𝐱) = ∑𝑠+1

𝑗=1 |𝑇̂𝑗 |. The definitions of the outward normals 𝐧𝐱(𝑇𝑗 ,𝐆𝑗 ) and 𝐧𝐱(𝑇𝑗 ,𝐆𝑗+1) are as follows:

𝐧𝐱(𝑇𝑗 ,𝐆𝑗 ) =
(𝐆𝑗+1 − 𝐺𝑗 ) × 𝐍𝑗

‖(𝐆𝑗+1 − 𝐺𝑗 ) × 𝐍𝑗‖
and 𝐧𝐱(𝑇𝑗 ,𝐆𝑗+1) =

(𝐆𝑗+1 − 𝐺𝑗 ) × 𝐍𝑗+1
‖(𝐆𝑗+1 − 𝐺𝑗 ) × 𝐍𝑗+1‖

. (11)

We can obtain a discrete divergence operator with second-order accuracy by

∇ℎ ⋅𝛷(𝐱) =
1

𝐴(𝐱)

𝑠+1
∑

𝑗=1

‖𝐆𝑗+1 −𝐆𝑗‖

6
(

2⟨𝛷(𝐆𝑗 ),𝐧𝐱(𝑇𝑗 ,𝐆𝑗 )⟩

+ 2⟨𝛷(𝐆𝑗+1),𝐧𝐱(𝑇𝑗 ,𝐆𝑗+1)⟩ + ⟨𝛷(𝐆𝑗 ),𝐧𝐱(𝑇𝑗 ,𝐆𝑗+1)⟩ + ⟨𝛷(𝐆𝑗+1),𝐧𝐱(𝑇𝑗 ,𝐆𝑗 )⟩
)

,

(12)

and the discrete gradient operator as

∇ℎ𝛷(𝐱) =
𝑠+1
∑

𝑗=1

‖𝐆𝑗 − 𝐱‖−2
∑𝑠+1
𝑘=1 ‖𝐆𝑘 − 𝐱‖−2

∇ℎ𝛷(𝐆𝑗 ) −
𝑠+1
∑

𝑗=1

‖𝐆𝑗 − 𝐱‖−2

2
∑𝑠+1
𝑘=1 ‖𝐆𝑘 − 𝐱‖−2

𝛥ℎ𝛷(𝐱)(𝐆𝑗 − 𝐱). (13)

3.2. Numerical scheme with second-order temporal accuracy

In this subsection, we present the SAV-based Crank–Nicolson-type method for fluid–surfactant systems, including its numerical
implementation steps and proof of energy dissipation. We first introduce a relaxation step that corrects for nonlinear terms
and transient auxiliary variables to resolve the inconsistencies produced by the classical SAV method. Then, the discrete energy
dissipation can be demonstrated using the proposed relaxation scheme.

Before proceeding that, we need to define the inner product in the proposed scheme on the curved surface. Assuming that
𝜙𝑖 and 𝜓𝑖 are functions on surfaces, where 𝜙𝑖 represents 𝜙(𝐱𝑖) and 𝜓𝑖 represents 𝜓(𝐱𝑖), respectively. At the vertex, the discrete
inner products can be defined as (𝜙, 𝜓)ℎ ∶=

∑

𝐱𝑖∈𝑋 𝜙𝑖𝜓𝑖𝐴(𝐱𝑖) and (∇ℎ𝜙,∇ℎ𝜓)ℎ ∶=
∑

𝐱𝑖∈𝑋
(

𝐴(𝐱𝑖)
∑𝑠−1
𝑗=0 ∇ℎ𝜙(𝐆𝑗 ) ⋅∇ℎ𝜙(𝐆𝑗 )

)

. The discrete
norm of function 𝜙 can be deduced as ‖𝜙‖2ℎ = (𝜙, 𝜙)ℎ and ‖∇ℎ𝜙‖2ℎ = (∇ℎ𝜙,∇ℎ𝜙)ℎ, respectively. In the following content, we use a
consistent time step length denoted as 𝛥𝑡 = 𝑇 ∕𝑁𝑇 , where 𝑇 represents the total computation time and 𝑁𝑇 stands for the number of
iteration steps. Assuming the given initial conditions for 𝜙0

𝑖 , 𝜓
0
𝑖 , 𝑝

0
𝑖 and 𝐯0𝑖 , we consider that the solution at the first iteration satisfies

𝜙−1 = 𝜙0, 𝜓−1 = 𝜓0 and 𝐯−1 = 𝐯0.
5

𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Step1. The Crank–Nicolson-type method is employed for the fluid–surfactant system to achieve the second-order accuracy. The
roposed scheme can be described as follows:

𝐯∗ − 𝐯𝑛
𝛥𝑡

+ 𝑄̂𝑛+
1
2

2
(

𝐯̃𝑛+
1
2 ⋅ ∇ℎ𝐯̃

𝑛+ 1
2 + ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 ⊗ 𝐯̃𝑛+

1
2 )
)

= −∇ℎ𝑝𝑛 + 𝜈𝛥ℎ(
𝐯∗ + 𝐯𝑛

2
)

− 𝜎𝑄̂𝑛+
1
2

𝜀
𝜙̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜙 − 𝜎𝑄̂𝑛+
1
2

𝛾
𝜓̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜓 , (14a)

𝐯𝑛+1 − 𝐯∗
𝛥𝑡

= −1
2
(∇ℎ𝑝𝑛+1 − ∇ℎ𝑝𝑛), (14b)

∇ℎ ⋅ 𝐯𝑛+1 = 0, (14c)
𝜙𝑛+1 − 𝜙𝑛

𝛥𝑡
=𝑀𝜙𝛥ℎ𝜇

𝑛+ 1
2

𝜙 − 𝑄̂𝑛+
1
2 ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 𝜙̃𝑛+

1
2 ), (14d)

𝜇
𝑛+ 1

2
𝜙 = −𝜀2𝛥ℎ𝜙

𝑛+ 1
2 + 𝑈̃𝑛+ 1

2 𝑟̂𝑛+
1
2 + 𝑆𝜙(𝜙

𝑛+ 1
2 − 𝜙̃𝑛+

1
2 ), (14e)

𝜓𝑛+1 − 𝜓𝑛

𝛥𝑡
=𝑀𝜓𝛥ℎ𝜇

𝑛+ 1
2

𝜓 − 𝑄̂𝑛+
1
2 ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 𝜓̃𝑛+

1
2 ), (14f)

𝜇
𝑛+ 1

2
𝜓 = −𝛾2𝛥ℎ𝜓

𝑛+ 1
2 + 𝑉 𝑛+ 1

2 𝑟̂𝑛+
1
2 + 𝑆𝜓 (𝜓

𝑛+ 1
2 − 𝜓̃𝑛+

1
2 ), (14g)

𝑟̂𝑛+1 − 𝑟𝑛
𝛥𝑡

= 1
2

(

𝜎
𝜀
(

𝑈̃𝑛+ 1
2 ,
𝜙𝑛+1 − 𝜙𝑛

𝛥𝑡
)

ℎ +
𝜎
𝛾
(

𝑉 𝑛+ 1
2 ,
𝜓𝑛+1 − 𝜓𝑛

𝛥𝑡
)

ℎ

)

, (14h)

𝑄̂𝑛+1 −𝑄𝑛

𝛥𝑡
= 𝜎
𝜀

((

∇ℎ ⋅ (𝐯̃
𝑛+ 1

2 𝜙̃𝑛+
1
2 ), 𝜇

𝑛+ 1
2

𝜙

)

ℎ
+
(

𝜙̃𝑛+
1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜙 , 𝐯
∗ + 𝐯𝑛
2

)

ℎ

)

+ 𝜎
𝛾

((

∇ℎ ⋅ (𝐯̃
𝑛+ 1

2 𝜓̃𝑛+
1
2 ), 𝜇

𝑛+ 1
2

𝜓

)

ℎ
+
(

𝜓̃𝑛+
1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜓 , 𝐯
∗ + 𝐯𝑛
2

)

ℎ

)

+
⎛

⎜

⎜

⎝

(

𝐯̃𝑛+
1
2 ⋅ ∇ℎ𝐯̃

𝑛+ 1
2 + ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 ⊗ 𝐯̃𝑛+

1
2 )
)

2
, 𝐯

∗ + 𝐯𝑛
2

⎞

⎟

⎟

⎠ℎ

, (14i)

where ̃(⋅)𝑛+
1
2 =

(

3(⋅)𝑛 − (⋅)𝑛−1
)

∕2, and (⋅)𝑛+
1
2 =

(

(⋅)𝑛+1 + (⋅)𝑛
)

∕2. In this study, the momentum equation is discretized using the
projection method with pressure correction in time [45]. The variable 𝐯∗ denotes the intermediate velocity, and the variables ̂(⋅)𝑛+1

represent the auxiliary variables discretized in time without relaxation. Additionally, in the Eqs. (14e) and (14g), the last terms
serves as stabilization mechanism.

While 𝑟 =
√

𝐻(𝜙, 𝜓) + 𝐶 and 𝑄 = 1 maintain consistency in continuous systems, their discrete counterparts 𝑟̂𝑛+1 and 𝑄̂𝑛+1 results
in 𝑟̂𝑛+1 ≠

√

𝐻(𝜙𝑛+1, 𝜓𝑛+1) + 𝐶 and 𝑄̂𝑛+1 not being constant. This drawback result in a loss of consistency in the modified discrete
energy dissipation law. Moreover, in the discrete version represented by Eq. (14i), the right side is not consistently equal to 0,
which results in the time-discretized 𝑄̂𝑛+1 being inconsistent with its exact value of 1. The definition provided in Eq. (14i) does not
guarantee that the calculated 𝑄̂𝑛+1 will consistently remain close to 1 under various simulation parameters. At the same time, the
onsistency between the numerical approach and the underlying model can lead to unreliable simulations because of the deviation
etween the calculated 𝑄̂𝑛+1 and 1. To address these issues, the following relaxation step is proposed to correct for 𝑟̂𝑛+1 inspired by
he idea presented in [38,46].

Step2. After computing 𝑟̂𝑛+1, 𝑟𝑛, 𝜙𝑛+1, 𝜓𝑛+1, 𝑄̂𝑛+1, 𝑄𝑛, 𝜇
𝑛+ 1

2
𝜙 , and 𝜇

𝑛+ 1
2

𝜓 , we proceed to obtain the corrected value 𝑟𝑛+1 from

𝑟𝑛+1 = 𝜆1 𝑟̂
𝑛+1 + (1 − 𝜆1)

√

𝐻(𝜙𝑛+1, 𝜓𝑛+1) + 𝐶. (15)

ere,

𝜆1 ∈ [0, 1], s.t. |𝑟𝑛+1|2 − |𝑟̂𝑛+1|2 ≤ 𝛥𝑡𝜂1(‖∇𝜇
𝑛+ 1

2
𝜙 ‖

2
ℎ + ‖∇𝜇

𝑛+ 1
2

𝜓 ‖

2
ℎ), (16)

here 0 < 𝜂1 < min{
𝜎𝑀𝜙

𝜀
,
𝜎𝑀𝜓

𝛾
}. A simplified inequality can be obtained from above one

𝑎1𝜆
2
1 + 𝑏1𝜆1 + 𝑐1 ≤ 0,

where the coefficients are

𝑎1 =
(

𝑟̂𝑛+1 −
√

𝐻(𝜙𝑛+1, 𝜓𝑛+1) + 𝐶
)2
,

𝑏1 = 2
(

𝑟̂𝑛+1 −
√

𝐻(𝜙𝑛+1, 𝜓𝑛+1) + 𝐶
)
√

𝐻(𝜙𝑛+1, 𝜓𝑛+1) + 𝐶,

𝑐1 = −(𝑟̂𝑛+1)2 +𝐻(𝜙𝑛+1, 𝜓𝑛+1) + 𝐶 − 𝛥𝑡𝜂1(‖∇𝜇
𝑛+ 1

2
𝜙 ‖

2
ℎ + ‖∇𝜇

𝑛+ 1
2

𝜓 ‖

2
ℎ).

ote that 𝑎1 + 𝑏1 + 𝑐1 = −𝛥𝑡𝜂1(‖∇𝜇
𝑛+ 1

2
𝜙 ‖

2
ℎ + ‖∇𝜇

𝑛+ 1
2

𝜓 ‖

2
ℎ) ≤ 0, and 𝑎1 ≠ 0, the solution to this optimization problem should be:

𝜆 = max{0, (−𝑏 −
√

𝑏2 − 4𝑎 𝑐 )∕2𝑎 }.
6

1 1 1 1 1 1
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Next, the corrected auxiliary variable 𝑄𝑛+1 can be obtained from

𝑄𝑛+1 = 𝜆2𝑄̂
𝑛+1 + (1 − 𝜆2). (17)

ere,

𝜆2 ∈ [0, 1], s.t. 1
2

(

|𝑄𝑛+1|2 − |𝑄̂𝑛+1|2
)

≤ 1
4
𝛥𝑡𝜂2‖∇(𝐯∗ + 𝐯𝑛)‖2ℎ, (18)

here 0 < 𝜂2 ≤ 𝜈. Similarly, a simplified inequality can be obtained from above one

𝑎2𝜆
2
2 + 𝑏2𝜆2 + 𝑐2 ≤ 0,

here the coefficients are

𝑎2 =
(

𝑄̂𝑛+1 − 1
)2 , 𝑏2 = 2

(

𝑄̂𝑛+1 − 1
)

,

𝑐2 = 1 − 𝑄̂𝑛+1 − 1
2
𝛥𝑡𝜂2‖∇(𝐯∗ + 𝐯𝑛)‖2ℎ.

ote that 𝑎2 + 𝑏2 + 𝑐2 = −1
2
𝛥𝑡𝜂2‖∇(𝐯∗ + 𝐯𝑛)‖2ℎ ≤ 0, and 𝑎2 ≠ 0, the solution to this optimization problem should be:

𝜆2 = max{0, (−𝑏2 −
√

𝑏22 − 4𝑎2𝑐2)∕2𝑎2}.

Remark 1. It is pertinent to note that within the confines of the present manuscript, due to constraints on length, we have elected
to omit the detailed exposition pertaining to the proof of uniqueness and solvability for Eqs. (14a)–(14i). While the discrete system
(14) is not fully decoupled into a linear system [45], the interested reader may refer to the methodology espoused in [24,25], where
an analogous uniqueness and solvability analysis is conducted for a coupled system involving surfactant dynamics on surfaces with
the Navier–Stokes equations utilizing the SAV approach [47]. We posit that the principles and techniques delineated therein can be
judiciously adapted and applied to the context of our study, offering a foundational basis for ascertaining the mathematical rigor
of our model.

3.3. Discrete energy stability

Before investigating the discrete energy stability, we should briefly review the following lemma, which has been proved in [36]:

emma 1. Let 𝛴 ∶= (𝑋,𝐹 ) be the triangular mesh without boundary and denote 𝜙 and 𝜓 to be the vector field on 𝛴. We have

(𝛥ℎ𝜙, 𝜓)ℎ = −(∇ℎ𝜙,∇ℎ𝜓)ℎ. (19)

Thus we can establish the following discrete energy stable theorem.

Theorem 2. By taking Lemma 1, the solution of Eqs. (14a)–(14i), Eqs. (15) and (17) satisfy the energy dissipation property

𝐸𝑛+1 − 𝐸𝑛 ≤ 0, (20)

where the discrete energy is

𝐸𝑛 = 𝜀𝜎
2
‖∇ℎ𝜙𝑛‖2ℎ +

𝜎𝑆𝜙
4𝜀

‖𝜙𝑛 − 𝜙𝑛−1‖2ℎ +
𝛾𝜎
2
‖∇𝜓𝑛‖2ℎ +

𝜎𝑆𝜓
4𝛾

‖𝜓𝑛 − 𝜓𝑛−1‖2ℎ

+ 1
2
‖𝐯𝑛‖2ℎ +

𝛥𝑡2

8
‖∇ℎ𝑝𝑛‖2ℎ + |𝑟𝑛|2 − 𝐶 + 1

2
|𝑄𝑛|2 − 1

2
.

Proof. Taking the inner product of Eq. (14d) with 𝜎𝛥𝑡
𝜀
𝜇
𝑛+ 1

2
𝜙 and combining with Lemma 1, we have

𝜎
𝜀
(𝜇
𝑛+ 1

2
𝜙 , 𝜙𝑛+1 − 𝜙𝑛)ℎ = −

𝜎𝑀𝜙𝛥𝑡
𝜀

‖∇ℎ𝜇
𝑛+ 1

2
𝜙 ‖

2
ℎ −

𝜎𝛥𝑡
𝜀

(

𝑄̂𝑛+
1
2 ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 𝜙̃𝑛+

1
2 ), 𝜇

𝑛+ 1
2

𝜙
)

ℎ. (21)

Taking the inner product of Eq. (14e) with 𝜎
𝜀
(𝜙𝑛+1 − 𝜙𝑛), we obtain

𝜎
𝜀
(𝜇
𝑛+ 1

2
𝜙 , 𝜙𝑛+1 − 𝜙𝑛)ℎ = 𝜀𝜎

2
(

‖∇ℎ𝜙𝑛+1‖2ℎ − ‖∇ℎ𝜙𝑛‖2ℎ
)

+ 𝜎
𝜀

(

𝑈̃𝑛+ 1
2 𝑟̂𝑛+

1
2 , 𝜙𝑛+1 − 𝜙𝑛

)

ℎ

+
𝜎𝑆𝜙
4𝜀

(‖𝜙𝑛+1 − 𝜙𝑛‖2ℎ − ‖𝜙𝑛 − 𝜙𝑛−1‖2ℎ + ‖𝜙𝑛+1 − 2𝜙𝑛 + 𝜙𝑛−1‖2ℎ).
(22)

Similarly, taking the inner product of Eq. (14f) with 𝜎𝛥𝑡
𝛾
𝜇
𝑛+ 1

2
𝜓 , we have

𝜎 (𝜇
𝑛+ 1

2
𝜓 , 𝜓𝑛+1 − 𝜓𝑛)ℎ = −

𝜎𝑀𝜓𝛥𝑡
‖∇ℎ𝜇

𝑛+ 1
2

𝜓 ‖

2 − 𝜎𝛥𝑡 (𝑄̂𝑛+
1
2 ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 𝜓̃𝑛+

1
2 ), 𝜇

𝑛+ 1
2

𝜓
)

. (23)
7
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Taking the inner product of Eq. (14g) with 𝜎
𝛾
(𝜓𝑛+1 − 𝜓𝑛), we can obtain

𝜎
𝛾
(𝜇
𝑛+ 1

2
𝜓 , 𝜓𝑛+1 − 𝜓𝑛)ℎ =

𝛾𝜎
2

(

‖∇ℎ𝜓𝑛+1‖2ℎ − ‖∇ℎ𝜓𝑛‖2ℎ
)

+ 𝜎
𝛾

(

𝑉 𝑛+ 1
2 𝑟̂𝑛+

1
2 , 𝜓𝑛+1 − 𝜓𝑛

)

ℎ

+
𝜎𝑆𝜓
4𝛾

(‖𝜓𝑛+1 − 𝜓𝑛‖2ℎ − ‖𝜓𝑛 − 𝜓𝑛−1‖2ℎ + ‖𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1‖2ℎ).
(24)

y multiplying Eq. (14h) with 2𝛥𝑡𝑟̂𝑛+
1
2 , we have

|𝑟̂𝑛+1|2 − |𝑟𝑛|2 =2𝛥𝑡𝑟̂𝑛+
1
2 ⋅

( 𝑟̂𝑛+1 − 𝑟𝑛
𝛥𝑡

)

=𝜎
𝜀

(

𝑈̃𝑛+ 1
2 𝑟̂𝑛+

1
2 , 𝜙𝑛+1 − 𝜙𝑛

)

ℎ
+ 𝜎
𝛾

(

𝑉 𝑛+ 1
2 𝑟̂𝑛+

1
2 , 𝜓𝑛+1 − 𝜓𝑛

)

ℎ
.

(25)

aking the inner product of Eq. (14a) with 𝛥𝑡(𝐯∗ + 𝐯𝑛)∕2, we have

1
2
(‖𝐯∗‖2ℎ − ‖𝐯𝑛‖2ℎ) +

1
2
𝛥𝑡(∇ℎ𝑝𝑛, 𝐯∗ + 𝐯𝑛)ℎ

= − 𝜈𝛥𝑡
4

‖∇ℎ(𝐯∗ + 𝐯𝑛)‖2ℎ −
𝑄̂𝑛+

1
2 𝛥𝑡
4

(

𝐯̃𝑛+
1
2 ⋅ ∇ℎ𝐯̃

𝑛+ 1
2 + ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 ⊗ 𝐯̃𝑛+

1
2 ), 𝐯∗ + 𝐯𝑛

)

ℎ

− 𝜎𝛥𝑡
2𝜀

(𝑄̂𝑛+
1
2 𝜙̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜙 , 𝐯∗ + 𝐯𝑛)ℎ −
𝜎𝛥𝑡
2𝛾

(𝑄̂𝑛+
1
2 𝜓̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜓 , 𝐯∗ + 𝐯𝑛)ℎ.

(26)

ecalling Eq. (14b), we find that

𝐯𝑛+1
𝛥𝑡

+ 1
2
∇ℎ𝑝𝑛+1 =

𝐯∗
𝛥𝑡

+ 1
2
∇ℎ𝑝𝑛. (27)

quaring the above equality and combining with Lemma 1 and Eq. (14c), we can obtain

1
2
𝛥𝑡(∇ℎ𝑝𝑛, 𝐯∗ + 𝐯𝑛)ℎ = 1

2
‖𝐯𝑛+1‖2ℎ −

1
2
‖𝐯∗‖2ℎ +

𝛥𝑡2

8
(‖∇𝑝𝑛+1‖2ℎ − ‖∇𝑝𝑛‖2ℎ). (28)

ombining Eqs. (26) and (28), we obtain

1
2
(‖𝐯𝑛+1‖2ℎ − ‖𝐯𝑛‖2ℎ) +

𝛥𝑡2

8
(‖∇𝑝𝑛+1‖2ℎ − ‖∇𝑝𝑛‖2ℎ)

= − 𝜈𝛥𝑡
4

‖∇ℎ(𝐯∗ + 𝐯𝑛)‖2ℎ −
𝑄̂𝑛+

1
2 𝛥𝑡
4

(

𝐯̃𝑛+
1
2 ⋅ ∇ℎ𝐯̃

𝑛+ 1
2 + ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 ⊗ 𝐯̃𝑛+

1
2 ), 𝐯∗ + 𝐯𝑛

)

ℎ

− 𝜎𝛥𝑡
2𝜀

(𝑄̂𝑛+
1
2 𝜙̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜙 , 𝐯∗ + 𝐯𝑛)ℎ −
𝜎𝛥𝑡
2𝛾

(𝑄̂𝑛+
1
2 𝜓̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜓 , 𝐯∗ + 𝐯𝑛)ℎ.

(29)

ultiplying Eq. (14i) with 𝛥𝑡𝑄̂𝑛+
1
2 , we have

𝑄̂𝑛+
1
2 (𝑄̂𝑛+1 −𝑄𝑛) =1

2

(

|𝑄̂𝑛+1|2 − |𝑄𝑛|2
)

= + 𝜎𝛥𝑡
𝜀

(

𝑄̂𝑛+
1
2 ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 𝜙̃𝑛+

1
2 ), 𝜇

𝑛+ 1
2

𝜙
)

ℎ +
𝜎𝛥𝑡
2𝜀

(𝑄̂𝑛+
1
2 𝜙̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜙 , 𝐯∗ + 𝐯𝑛)ℎ

+ 𝜎𝛥𝑡
𝛾

(

𝑄̂𝑛+
1
2 ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 𝜓̃𝑛+

1
2 ), 𝜇

𝑛+ 1
2

𝜓
)

ℎ +
𝜎𝛥𝑡
2𝛾

(𝑄̂𝑛+
1
2 𝜓̃𝑛+

1
2 ∇ℎ𝜇̃

𝑛+ 1
2

𝜓 , 𝐯∗ + 𝐯𝑛)ℎ

+ 𝑄̂𝑛+
1
2 𝛥𝑡
4

(

𝐯̃𝑛+
1
2 ⋅ ∇ℎ𝐯̃

𝑛+ 1
2 + ∇ℎ ⋅ (𝐯̃

𝑛+ 1
2 ⊗ 𝐯̃𝑛+

1
2 ), 𝐯∗ + 𝐯𝑛

)

ℎ
.

(30)

ombining Eqs. (21)–(25) and (29)–(30), we get

𝜀𝜎
2

(

‖∇ℎ𝜙𝑛+1‖2ℎ − ‖∇ℎ𝜙𝑛‖2ℎ
)

+
𝛾𝜎
2

(

‖∇ℎ𝜓𝑛+1‖2ℎ − ‖∇ℎ𝜓𝑛‖2ℎ
)

+
𝜎𝑆𝜙
4𝜀

(‖𝜙𝑛+1 − 𝜙𝑛‖2ℎ − ‖𝜙𝑛 − 𝜙𝑛−1‖2ℎ + ‖𝜙𝑛+1 − 2𝜙𝑛 + 𝜙𝑛−1‖2ℎ)

+
𝜎𝑆𝜓
4𝛾

(‖𝜓𝑛+1 − 𝜓𝑛‖2ℎ − ‖𝜓𝑛 − 𝜓𝑛−1‖2ℎ + ‖𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1‖2ℎ)

+ 1
2
(‖𝐯𝑛+1‖2ℎ − ‖𝐯𝑛‖2ℎ) +

𝛥𝑡2

8
(‖∇𝑝𝑛+1‖2ℎ − ‖∇𝑝𝑛‖2ℎ) + |𝑟̂𝑛+1|2 − |𝑟𝑛|2

= −
𝜎𝑀𝜙𝛥𝑡

‖∇ℎ𝜇
𝑛+ 1

2
‖

2 −
𝜎𝑀𝜓𝛥𝑡

‖∇ℎ𝜇
𝑛+ 1

2
𝜓 ‖

2 − 𝜈𝛥𝑡
‖∇ℎ(𝐯∗ + 𝐯𝑛)‖2 − 1 (

|𝑄̂𝑛+1|2 − |𝑄𝑛|2
)

.

(31)
8
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By combining Eq. (31) with the inequality in Eq. (15) and Eq. (17) we can obtain the energy dissipation as follows:

𝐸𝑛+1 − 𝐸𝑛

= 𝜀𝜎
2

(

‖∇ℎ𝜙𝑛+1‖2ℎ − ‖∇ℎ𝜙𝑛‖2ℎ
)

+
𝜎𝑆𝜙
4𝜀

(‖𝜙𝑛+1 − 𝜙𝑛‖2ℎ − ‖𝜙𝑛 − 𝜙𝑛−1‖2ℎ)

+
𝛾𝜎
2

(

‖∇ℎ𝜓𝑛+1‖2ℎ − ‖∇ℎ𝜓𝑛‖2ℎ
)

+
𝜎𝑆𝜓
4𝛾

(‖𝜓𝑛+1 − 𝜓𝑛‖2ℎ − ‖𝜓𝑛 − 𝜓𝑛−1‖2ℎ)

+ 1
2
(‖𝐯𝑛+1‖2ℎ − ‖𝐯𝑛‖2ℎ) +

𝛥𝑡2

8
(‖∇𝑝𝑛+1‖2ℎ − ‖∇𝑝𝑛‖2ℎ) + |𝑟𝑛+1|2 − |𝑟𝑛|2 + 1

2
|𝑄𝑛+1 −𝑄𝑛|2

≤ −
(𝜎𝑀𝜙

𝜀
− 𝜂1

)

𝛥𝑡‖∇ℎ𝜇
𝑛+ 1

2
𝜙 ‖

2
ℎ −

(𝜎𝑀𝜓

𝛾
− 𝜂1

)

𝛥𝑡‖∇ℎ𝜇
𝑛+ 1

2
𝜓 ‖

2
ℎ −

1
4
(𝜈 − 𝜂2)𝛥𝑡‖∇ℎ(𝐯∗ + 𝐯𝑛)‖2ℎ

−
𝑆𝜙
2
‖∇𝜙𝑛+1 − 2∇𝜙𝑛 + ∇𝜙𝑛−1‖2ℎ −

𝑆𝜓
2

‖∇𝜓𝑛+1 − 2∇𝜓𝑛 + ∇𝜓𝑛−1‖2ℎ ≤ 0,

(32)

hich corresponds to Eq. (20). □

emark 2. For the sake of brevity and clarity, it is imperative to elucidate that the discrete operators defined on the curved
patial domain within this work have been previously validated to possess analogous properties to those defined in conventional
uclidean spaces, as substantiated by the literature [36,48–50]. As a result, the convergence properties and error estimates that
re well-established for discrete systems within standard Euclidean geometry are ostensibly applicable, and by extension, can be
dapted to our context of curved spaces without the loss of generality. In light of this, while our investigation encompasses the
ynamics of a fluid–surfactant system on a discretized surface, the fundamental algorithmic framework remains consistent with
he principles that govern analogous systems in Euclidean domains. The robustness of the convergence and error estimation for
he Surface-Active Agent (SAV) method has been thoroughly established and numerically corroborated in prior works [51–53].
iven the aforementioned reasons, a detailed convergence analysis specific to our proposed scheme is deemed redundant and is
onsequently not included herein. Moreover, we affirm that our algorithm exhibits second-order convergence in both spatial and
emporal dimensions, as substantiated by our numerical validations.

. Numerical tests

.1. Mass conservation and energy dissipation test

In this subsection, we verify the unconditional stability of the proposed method. The subsequent discussion will illustrate the
aw of energy dissipation and mass conservation. Here are the initial conditions:

⎧

⎪

⎨

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 0.5 + 0.01(rand(𝑥, 𝑦, 𝑧) − 0.5),

𝜓(𝑥, 𝑦, 𝑧, 0) = 0.1 + 0.05rand(𝑥, 𝑦, 𝑧),
𝑢(𝑥, 𝑦, 𝑧, 0) = 0.02, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0, 𝑝(𝑥, 𝑦, 𝑧, 0) = 0,

here rand (𝑥, 𝑦, 𝑧) represents a random number ranging from 0 to 1. We employ the following set of parameter values for the
umerical simulations: ℎ = 0.1, 𝜀 = 𝛾 = 0.02, 𝑀𝜙 = 𝑀𝜓 = 0.02, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.03, 𝜈 = 1. As shown in Fig. 2, we can
bserve the phase separation of the phase field variables 𝜙 and surfactant 𝜓 from the initial chaotic state with the influence of the
luid–surfactant model. Due to surface tension, the interface visibly evolves, with a notable concentration of surfactant occurring at
he interface. We observe both mass conservation and discrete energy dissipation in the experimental results, and they align with
ur theoretical framework.

.2. Stability tests

Due to the high-order nonlinear term in the system, severe time step limitations exist on numerical stability. We conduct
umerical experiments with different time steps: 𝛥𝑡 = 1, 0.1, and 0.01, respectively, to illustrate the stability of our proposed scheme.
hen we set the initial conditions as follows:

⎧

⎪

⎨

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 0.5 + 0.01(rand(𝑥, 𝑦, 𝑧) − 0.5),

𝜓(𝑥, 𝑦, 𝑧, 0) = 0.1 + 0.05rand(𝑥, 𝑦, 𝑧), 𝑝(𝑥, 𝑦, 𝑧, 0) = 0,

𝑢(𝑥, 𝑦, 𝑧, 0) = 0.02, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0.

e use the following set of parameter values for the numerical simulations: ℎ = 0.1, 𝜀 = 𝛾 = 0.02, 𝑀𝜙 = 𝑀𝜓 = 0.02, 𝜎 = 𝜀,
𝜉 = 0.0001, 𝜃 = 0.03, 𝜈 = 1 regardless of the time step size. As shown in Fig. 3, the numerical solution remains stable without any
explosions, and the initial energy values at various time steps do not exhibit an increase over time. This indicates the feasibility of
employing larger time steps in numerical simulations. Nonetheless, results obtained by using 𝛥𝑡 = 0.1 exhibit similarities to those
with a smaller time step, 𝛥𝑡 = 0.01, but diverge from those obtained using a larger time step, 𝛥𝑡 = 1, requiring significantly more
time for convergence. Thus, it is advisable to choose an appropriate value 𝛥𝑡 = 0.1 in this and subsequent experiments to balance
accuracy and computational efficiency.
9
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Fig. 2. Evolution of energy dissipation and mass conservation over time of the proposed scheme for a time step size of 𝛥𝑡 = 0.1. The inset figures display the
morphology of the phase variable 𝜙 at specific times(from left to right, representing the results at 𝑡 = 0, 30, 60 and 90, respectively).

Fig. 3. Temporal evolution of the non-increasing energy functional for the three times step sizes, 𝛥𝑡 = 0.01, 0.1 and 1.

4.3. Convergence test

In this subsection, we conduct convergence tests in time and space to confirm the second-order accuracy of our proposed scheme.
To eliminate potential differential effects stemming from manifold topology, we employ unit spheres to produce a collection of high-
quality meshes adhering to Delaunay triangle properties. To assess the temporal second-order accuracy, we utilize a distinct set of
time steps, specifically 𝛥𝑡 = 8e−2, 4e−2, 2e−2, and 1e−2, while maintaining a consistent spatial step of ℎ = 5e−2. These tests run
until 𝑡 = 10, utilizing identical initial conditions:

⎧

⎪

⎨

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 0.5 + 0.5 sin(6𝜋𝑥) sin(6𝜋𝑦) sin(6𝜋𝑧),

𝜓(𝑥, 𝑦, 𝑧, 0) = 0.15 + 0.01rand(𝑥, 𝑦, 𝑧), 𝑝(𝑥, 𝑦, 𝑧, 0) = 0,

𝑢(𝑥, 𝑦, 𝑧, 0) = 0, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0.01.

The parameters have been set to 𝜀 = 𝛾 = 0.02, 𝑀𝜙 = 𝑀𝜓 = 0.02, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.03, 𝜈 = 1. Note that such a system has
no analytical solution so far, we use the fine-grained time step result 𝛥𝑡 = 4e−4 as the reference solution and denote it as 𝜙ref.
Here, the error is denoted as 𝑒𝑖,𝛥𝑡 ∶= 𝜙𝑖,𝛥𝑡 − 𝜙ref

𝑖 , while the convergence rate is represented by the ratio of the successive errors,
denoted as log2(‖𝑒𝑖,𝛥𝑡‖2∕‖𝑒𝑖,𝛥𝑡∕2‖2). As shown in Table 1, the errors and convergence rates can be found demonstrating the quadratic
accuracy of the proposed schemes. To present the second-order spatial accuracy of the proposed scheme, we define the error as
𝑒𝑖,ℎ ∶= 𝜙𝑖,𝑑 − (𝛼𝑖𝜙ref

𝑝 + 𝛽𝑖𝜙ref
𝑞 + 𝜆𝑖𝜙ref

𝑟 ), where the weighting coefficients 𝛼𝑖, 𝛽𝑖 and 𝜆𝑖 are determined by 𝐯𝑖,𝑑 ∶= 𝛼𝑖𝐯ref
𝑝 + 𝛽𝑖𝐯ref

𝑞 + 𝜆𝑖𝐯ref
𝑟 ,

and 𝑝, 𝑞, and 𝑟 denote the indices of the microreference grid within the triangle. These results are presented in Table 2, where
log2(‖𝑒𝑖,ℎ‖2∕‖𝑒𝑖,ℎ∕2‖2) represents the convergence rate, with a common time step of 𝛥𝑡 = 4𝑒− 4. The reference solution is calculated
using a highly refined spatial grid with ℎ = 0.005. The information presented in Table 2 shows that the second-order spatial accuracy
is achieved.
10
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Table 1
Numerical errors and convergence rates of the phase field variables 𝜙 and 𝜓 , and the velocity fields 𝑢, 𝑣, and 𝑤 using various time steps.
𝛥𝑡 Error Order

𝜙 𝜓 𝑢 𝑣 𝑤 𝜙 𝜓 𝑢 𝑣 𝑤

8.0e−02 2.49e−04 1.74e−05 8.55e−05 4.45e−05 1.35e−04 – – – – –
4.0e−02 6.32e−05 4.41e−06 2.30e−05 1.03e−05 3.52e−05 1.98 1.98 1.90 2.11 1.94
2.0e−02 1.79e−05 1.11e−06 5.48e−06 2.67e−06 8.81e−06 1.82 1.99 2.07 1.94 1.99

Table 2
Numerical errors and convergence rates of the phase field variables 𝜙 and 𝜓 , and the velocity fields 𝑢, 𝑣, and 𝑤 using various space steps.
ℎ Error Order

𝜙 𝜓 𝑢 𝑣 𝑤 𝜙 𝜓 𝑢 𝑣 𝑤

0.2 2.87e−03 2.06e−04 4.23e−06 4.26e−06 4.21e−06 – – – – –
0.1 8.25e−04 5.51e−05 1.11e−06 1.10e−06 1.12e−06 1.80 1.90 1.93 1.95 1.91
0.05 1.33e−04 1.08e−05 2.69e−07 2.69e−07 2.69e−07 2.63 2.34 2.04 2.04 2.05

Fig. 4. Separation of phases on different surfaces: computations on a bunny model (top) and a bumpy sphere (bottom). (a) illustrates the triangulation of the
irregular meshes. (b) and (c) show the distribution of the fluid phase field 𝜙 and the surfactant 𝜓 at 𝑡 = 0.03, respectively.

4.4. Phase separation on irregular surface mesh

In this section, we validate the effectiveness and reliability of our discretization algorithm on two irregular curved surface
meshes: the surface of a bunny model and a bumpy sphere. The quality of mesh structures often significantly affects the accuracy
and precision of computations in conventional surface discretization simulation algorithms. This is particularly evident in discrete
divergence, gradient, and Laplace–Beltrami operator calculations, which may challenge the conservativity of the system. Such
challenges are commonly encountered in surface discretization simulations. As shown in Fig. 4, we solve the fluid–surfactant system
on the aforementioned irregular surfaces to assess the feasibility and accuracy of our algorithm in handling irregular surfaces. The
initial conditions are:

⎧

⎪

⎨

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 0.5 + 0.2 sin(10𝜋𝑥) sin(10𝜋𝑦) sin(10𝜋𝑧),

𝜓(𝑥, 𝑦, 𝑧, 0) = 0.35 + 0.05 sin(10𝜋𝑥) sin(10𝜋𝑦) sin(10𝜋𝑧)

𝑢(𝑥, 𝑦, 𝑧, 0) = 0, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0.01, 𝑝(𝑥, 𝑦, 𝑧, 0) = 0.

The parameters chosen for the bunny model surface are 𝜀 = 𝛾 = 0.003, 𝑀𝜙 =𝑀𝜓 = 0.2, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.1, 𝜈 = 2. For the other
bumpy sphere, the parameters selected are 𝜀 = 𝛾 = 0.1, 𝑀 =𝑀 = 0.5, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.1, 𝜈 = 2 The figure displays irregular
11

𝜙 𝜓



Communications in Nonlinear Science and Numerical Simulation 135 (2024) 108054B. Jiang et al.
Fig. 5. Temporal evolution of polymerization of three liquid groups in the presence of surfactant at 𝑡 = 0, 20, 40, and 100. The upper and lower subfigures
represent phase field variable 𝜙 and surfactant 𝜓 respectively.

meshes triangulation in Fig. 4(a). Fig. 4(b) and (c) show the distribution of the fluid phase field 𝜙 and the surfactant 𝜓 at 𝑡 = 0.03,
respectively. The results above demonstrate that the phase separation trend of the fluid phase field variable 𝜙 and the aggregation
effect of the surfactant 𝜓 are well captured on the two irregular triangular surface meshes. This suggests that our method can yield
physically realistic results even with irregular and low-quality surface meshes.

4.5. Liquid agglomeration test on curved surfaces

In this subsection, we utilize the proposed fluid–surfactant scheme to model the relaxation process of binary phase flow and
surfactant on a curved surface. As illustrated in Fig. 5, we simulate the fusion process of three square liquid groups, initially sharing
a common vertex on a unit sphere each other. Motivated by surface tension, the adjacent square liquid entities gradually merge
over time, causing a concentration of surfactant at the boundary between the two-phase fluids. Consequently, the initially sharp
shapes relax into smoother interfaces as this transformation progresses. The initial conditions are:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 1.5 − 0.5 tanh
(

|𝑥 − 1| + |𝑦| + |𝑧| − 1
√

5𝜀

)

− 0.5 tanh
(

|𝑥| + |𝑦 − 1| + |𝑧| − 1
√

5𝜀

)

− 0.5 tanh
(

|𝑥| + |𝑦| + |𝑧 − 1| − 1
√

5𝜀

)

,

𝜓(𝑥, 𝑦, 𝑧, 0) = 0.22, 𝑝(𝑥, 𝑦, 𝑧, 0) = 0,

𝑢(𝑥, 𝑦, 𝑧, 0) = 0, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0.

The parameters have been set to 𝜀 = 𝛾 = 0.02, 𝑀𝜙 = 𝑀𝜓 = 0.1, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.1, 𝜈 = 1. We conduct this simulation using
a time step of 𝛥𝑡 = 0.1ℎ with a mesh size of ℎ = 0.1. The subfigures in Fig. 5 capture snapshots of the phase field variable and
surfactant at 𝑡 = 0, 20, 40, and 100, respectively.

4.6. Deformation test under shear flow

In this subsection, we conducted simulations to investigate the deformations of a droplet influenced by shear flow, both in the
presence and absence of surfactant. The initial conditions were set as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 0.5 + 0.5 tanh
(

√

(𝑥 − 1)2 + 𝑦2 + 𝑧2 − 0.5
√

2𝜀

)

,

𝜓(𝑥, 𝑦, 𝑧, 0) = 0.22, 𝑝(𝑥, 𝑦, 𝑧, 0) = 0,

𝑢(𝑥, 𝑦, 𝑧, 0) = 0, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0,

Subsequently, with parameters 𝜀 = 𝛾 = 0.02, 𝑀𝜙 = 0.5, 𝑀𝜓 = 0.1, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.1, 𝜈 = 1. We conduct this simulation
using a time step of 𝛥𝑡 = 0.1 and a mesh size of ℎ = 0.1. Fig. 6 displays the shape of the droplet under the effect of shear flow as
12



Communications in Nonlinear Science and Numerical Simulation 135 (2024) 108054B. Jiang et al.
Fig. 6. (a) Depicts the temporal evolution of the phase field variable under shear flow without the influence of any surfactant. (b) Illustrates controlled tests of
(a) with the influence of a surfactant. The specified time instances are 𝑡 = 2, 8, 16, and 32.

Fig. 7. The evolution of the surfactant over time under the effect of shearflow, corresponding to the phase field variable 𝜙 in Fig. 6(b), with snapshots at
𝑡 = 2, 8, 16 and 32, respectively.

obtained through the proposed scheme. As shown in Fig. 6(a), snapshots of the droplet affected by shear flow are shown at time
instances 𝑡 = 2, 8, 16, and 32, without surfactant. Fig. 6(b) presents the scenario with surfactant at the same time points. The top
subfigure shows that at 𝑡 = 16, the droplet tip breaks due to high velocity and minimal surface tension. Contrarily, in the presence
of surfactant surface tension, the droplet remains intact without any breakage, as illustrated in Fig. 6(b). In Fig. 7, snapshots of
the surfactant distribution at corresponding moments are provided. Moreover, in Fig. 8, snapshots of velocity field and pressure
field on a surface at different moments are provided. These observations showcase the consistency of the proposed scheme with the
anticipated physical behavior.

4.7. Spinodal decomposition

In this subsection, we examine the evolution of phase separation under various initial conditions on curved surface, considering
a homogeneous binary mixture. The system evolves from a uniform state to a two-phase state as concentration fluctuations
spontaneously grow. Parameters are chosen as 𝜀 = 𝛾 = 0.02, 𝑀𝜙 = 0.5, 𝑀𝜓 = 0.1, 𝜎 = 𝜀, 𝜉 = 0.0001, 𝜃 = 0.1, 𝜈 = 2, with
initial conditions

⎧

⎪

⎨

⎪

⎩

𝜙(𝑥, 𝑦, 𝑧, 0) = 𝜙̄0 + 0.01rand(𝑥, 𝑦, 𝑧)
𝜓(𝑥, 𝑦, 𝑧, 0) = 0.15 + 0.01rand(𝑥, 𝑦, 𝑧), 𝑝(𝑥, 𝑦, 𝑧, 0) = 0,

𝑢(𝑥, 𝑦, 𝑧, 0) = 0, 𝑣(𝑥, 𝑦, 𝑧, 0) = 0, 𝑤(𝑥, 𝑦, 𝑧, 0) = 0.

We conduct these simulations using the same time step of 𝛥𝑡 = 0.1ℎ with ℎ = 0.1. To visualize the evolution of phase field variables
and surfactant under different phase field concentration ratios 𝜙̄0, snapshots at time 𝑡 = 0, 1, 2, 4, and 8 are presented in Figs. 9, 10,
and 11, respectively. In the case of a homogeneous two-phase fluid mixture, phase separation is evident as concentration fluctuations
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Fig. 8. Snapshots of velocity field and pressure field on a surface at 𝑡 = 0, 𝑡 = 8, and 𝑡 = 16, respectively.

Fig. 9. Temporal evolution for 𝜙̄ = 0.5. The upper and lower subfigures depict snapshots of the phase field variable 𝜙 and surfactant 𝜓 at 𝑡 = 0, 1, 2, 4, and 8,
respectively.

increase. Due to surface tension effects, the binary mixture starts to decompose and forms a two-phase interface soon after phase
separation initiates. The system transitions from homogeneity to a clear two-phase state. In the case where 𝜙̄0 = 0.5 (Fig. 9), the
two fluids are uniformly mixed with equal masses, resulting in the emergence of a continuous network pattern. As surface tension
influences the system, the interface merges to form a distinct two-phase state. When 𝜙̄0 = 0.6 (Fig. 10), an uneven composition
results in a pattern where the fluid with a higher component concentration (yellow) encircles the fluid with a lower component
concentration (blue), promoting the formation of fine droplets. As the system minimizes its total energy, these isolated droplets either
merge or increase in size. Similarly, for 𝜙̄0 = 0.25 (Fig. 11), the portion of blue fluid with a high concentration also dominates most
of the surface and surrounds the other part. As the system minimizes its total energy, the corresponding isolated droplets thicken
or merge. Collectively, the results derived from these simulations share similar traits to the findings discussed in [24,28,32,34],
thereby reinforcing the suitability and applicability of our scheme on curved surfaces.

5. Conclusion

In this paper, we introduced an effective approach for simulating fluid–surfactant evolution on curved surfaces. We combined
the water–oil–surfactant system, based on the phase field model, with the incompressible NS equation. We adapted the consistency-
enhanced SAV method and the projection method into a linear system suitable for biconjugate gradient stabilization techniques. We
formulated discrete differential operators applicable to a wide range of surfaces. These operators consistently demonstrated verified
second-order accuracy in spatial discretization. To achieve second-order temporal accuracy, we employed a discretization method
similar to the Crank–Nicolson approach for the solution equation. The unconditional stability of the discretized system means it is
free from time step restrictions. We validated the energy stability of this system and confirmed the second-order accuracy of our
discretization approach through various numerical experiments. Compared to alternative algorithms, the approach introduced in
this article achieved superior accuracy while significantly reducing computational demands. By utilizing surface data exclusively, it
avoided the need for extensive calculations throughout the entire three-dimensional space. The algorithm presented in this article
has several limitations, which have be outlined as the following:
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Fig. 10. Temporal evolution for 𝜙̄ = 0.6. The upper and lower subfigures depict images capturing the phase field variable 𝜙 and surfactant 𝜓 at 𝑡 = 0, 1, 2, 4,
and 8, respectively.

Fig. 11. Temporal evolution for 𝜙̄ = 0.25. The upper and lower subfigures depict images capturing the phase field variable 𝜙 and surfactant 𝜓 at 𝑡 = 0, 1, 2, 4,
and 8, respectively.

• The effectiveness of this algorithm relies heavily on the quality of the surface mesh. Insufficient mesh quality, especially if it
does not conform to Delaunay decomposition, can greatly undermine the accuracy of numerical computations.

• The computational complexity of this algorithm is noteworthy, necessitating meticulous attention to grid point coordinates
and their interconnections, which directly correlates with the volume of grid data.

• Meeting elevated spatial accuracy criteria necessitates the redefinition of discrete space operators, a task that inherently poses
greater difficulty.
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