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Understanding the complexity of the nucleation and transition between the crystalline and 
quasicrystalline is significant because the structural incommensurability is anisotropic and of 
significance in revealing material properties. This paper reports the two- and three-dimensional 
nucleation and transition investigation from quasicrystals to crystals using a phase field method. 
The investigation starts with the Lifshitz–Petrich (LP) model, which is derived from the Landau 
theory for the exploration of critical nuclei. By the variational derivation, we construct two 
phase field models with tenth- and eighth-order, which provide the possibility of exploring the 
transition under stable phase states. In order to dissipate the original Lifshitz–Petrich energy, 
we apply a Lagrange multiplier method to modify the two models and solve them by the 
Fourier spectral method. Whereas the nonlinearity leads to expensive computational burden and 
extra stiffness, the designed algorithm can effectively avoid the numerical oscillations caused 
by rigidity and keep an 𝑂(𝑁 log𝑁) computational complexity, where 𝑁 is the mesh grid size. 
To further demonstrate the robustness and advantages of the proposed method for handling 
phase-field modeling of crystalline structures, we compare its performance with other methods 
for constructing unconditionally stable methods. Our method can be directly implemented on 
a GPU for acceleration and achieves multiple times faster performance compared to CPU-only 
alternatives. Various numerical tests have been used to validate that our method works well for 
revealing the transition between different stable states during the nucleation process.

1. Introduction

Despite the quasicrystals are discovered by Shechtmann and Blech [1], the pursuits of understanding the evolution of quasicrys-

talline structures have never disappeared [2], whereas these explorations lead directly to a new material revolution and a tremendous 
progress to understand and reexamine the basic notions of matter physics [5,6]. Since the physical properties of metals and alloys are 
controlled by the symmetry and morphology of the crystals and quasicrystals [7], it is of great significance to quantify the transition 
and nucleation of quasicrystalline structure from a metastable state to a stable state for creating the desirable properties of materials 
[8,9]. However, various synthetic and natural compounds exhibit the periodicities and the quasiperiodicities on the metre scale [10], 
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which indicates that the quasicrystalline structure is not only present in metal alloys but can be exploited in diverse applications 
such as fabrication of photonic bandgap array [11], infrared light absorption [12], reduction of adhesion [13], heat insulation [14], 
and mechanical reinforcement of composites [15,16]. Archer et al. [17] started from the density functional theory to investigate a 
two-dimensional system of soft particles and observed the dynamic mechanism for forming quasicrystals with two length scales. They 
reported that the quasicrystalline structures were created by the competition between the instability of two scales. Asadi and Zaeem 
[18] reviewed the advancements of quantitative solid-liquid crystal modeling, which were summarized into one-mode and two-mode 
crystalline forms corresponding to the critical wavelength. Dotera et al. [19] theoretically explored the link between the micellar 
softness and the quasicrystalline order. They provided a conceptual understanding for the quasicrystals that the interactions between 
macromolecular particles come from contacts rather than links at a distance. Various state-of-the-art works suggested the theory of 
nucleation and revealed the mechanism of quasicrystal and crystal, although further studies within the computational framework are 
required to confirm the corresponding phenomena.

Recent developments in mechanism research of nanostructural and microstructural pattern, which plays a significant role in 
predicting the materials properties and reducing the experimental costs [3], have heightened the need for computational methods 
with high performance. Examining the nucleation and transition from the quasicrystalline structure to crystalline structure was 
widely concerned [4]. The methods to this issue fall in three categories of classical nucleation theory, atomistic theory, and density 
functional theory [5]. The classical nucleation theory is within the thermodynamic and kinetic framework [20], which describes 
the initial stage of the phase transformation and the decay of metastable states [21]. The atomistic theory is extended based on 
the classical mechanics and kinetic theory [22,23]. The density functional theory is described by the density of molecular species, 
whose landscape is described by a free-energy functional [24,25]. This type method investigated the properties of a system by 
using the electron density distribution function as the only variable describing all the corresponding properties [26,27]. Han et 
al. [28] established a multiscale string method to compute the minimal path of Landau–de Gennes energy and transition state. 
Their method demonstrated the mechanism of temperature depended energy barrier changes. Jiang and Zhang [29] focused on 
the high accuracy numerical method and established a projection method to compute the quasicrystalline structures rather than 
crystalline approximation. Cao et al. [30] developed a gradient flow based method to capture the quasiperiodic interface for the 
Lifshitz–Petrich model [31], which can be extended to simulate the interface dynamics between different ordered structures. Cheng 
et al. [32] developed and analyzed an energy stable numerical scheme for the square phase field crystal equation at the atomic 
scale. The theoretical analysis including unique solvability, convergence analysis, and energy stability, were provided to deepen the 
understanding of crystal transition from the mathematical perspective. Several previous studies [33–35] have established crystalline 
transition model within the phase field framework from density functional theory, which considers the interface as a thickness layer 
over a continuous transition.

Establishing the phase field based quasicrystalline equations was inspired by the Swift–Hohenberg equation, which is used to 
model the thermal fluctuation in Rayleigh–Benard convection problem [37]. Let us consider the Landau theory [36] and apply the 
Lifshitz–Petrich model by using the high-index saddle dynamics as follows:

(𝜙) =∫
Ω

𝜙

2
𝐿2
1(𝐿

2
2 + 𝑟2)𝜙+ (𝜙)𝑑𝐱, (1)

which is established to explore the quasicrystalline structures. Here 𝐿1 ∶= ∇2 + 12 and 𝐿2 ∶= ∇2 + 𝑞2 are two linear operators, 
the scalar order parameter 𝜙(𝐱) ∶ Ω ⊂𝑑 (𝑑 = 2, 3) → is the density profile of the molecules, ∇ is the gradient operator, 1 and 
𝑞 are two characteristic wavelength scales, and  (𝜙) = −𝜖𝜙2∕2 − 𝛼𝜙3∕3 + 𝜙4∕4 is the nonlinear potential. Here 𝜖 is denoted as 
a temperature-like parameter, 𝑟 is denoted as a relative stable parameter of the two-mode and one-mode structure, and 𝛼 is the 
parameter characterizing the asymmetry of the order parameters. The Lyapunov functional Eq. (1) consists a rich phase behaviors 
and provides the ideal model system for the investigation of transition pathways connecting crystals and quasicrystals [5]. The 
quadratic term 𝜖𝜙2∕2 favors the growth of the instability [37] whereas the quartic term is responsible for its saturation by providing 
a lower bound for  . The cubic term −𝛼𝜙3∕3 is considered to modify the Lyapunov functional while the symmetry of the parametric 
forcing is broken and forms hexagonal patterns by taking triad interactions of standing plane waves [38].

In recent decades, a great deal of research has been devoted to the development of energy-stable numerical algorithms, which con-

serve the total energy of the physical system being simulated [39]. These algorithms have good stability and convergence properties, 
and can effectively avoid the accumulation of numerical errors. The fully implicit time discretization method treats all time terms 
implicitly, which can avoid the time step restriction brought by the explicit method, but the computational cost is large [40,41]. The 
convex splitting method split the nonlinear PDE into a set of linear or convex subproblems, which can then be easily solved [43]. 
The spectral method uses spectral functions to approximate spatial derivatives. While spectral methods offer advantages such as 
high accuracy, fast convergence, and ease of parallelization, their drawbacks, including computational expense, difficulty in han-

dling irregular boundaries, and potential instability in certain situations, cannot be overlooked [42]. The Scalar Auxiliary Variable 
(SAV) method and the Invariant Energy Quadratization (IEQ) method are performed by introducing a Lagrange multiplier (auxiliary 
variable) [50,44]. These two kinds method have proven to be powerful to construct energy stable schemes, while they requires the 
integral of the free energy bounded from below. The Lagrange multiplier method introduces Lagrange multipliers to transform the 
energy conservation condition into a constraint condition, which is unconditionally energy stable with the original energy and does 
not require the explicitly treated part of the free energy to be bounded from below [45]. While these additional advantages are valu-

able, they do necessitate the solution of a nonlinear algebraic equation for the Lagrange multiplier. However, the computational cost 
2

of this step is negligible compared to the main cost of the algorithm, making it a worthwhile trade-off. Existing numerical methods 
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have been applied to study crystal nucleation under various microscopic conditions and in solid-liquid phase change scenarios, but 
there is a lack of research on phase transitions between different states of quasicrystals.

The aim of this paper is to develop an efficient computational method for the investigation of the nucleation and transition from 
quasicrystalline to crystalline within the framework of Landau theory. We establish the phase field based model by the variational 
derivation from the LP energy under the heuristic guidance of density functional theory, which can be used to describe the quasicrys-

talline structures with two characteristic wavelength scales. The derived tenth- and eighth-order model suffer from the stiffness and 
issues of falling into local minima caused by the nonlinear term, thus a space and time dependent Lagrange multiplier method has 
been applied to address these problems, which takes into account the nonlocal and local effect. In order to guarantee the second order 
accuracy of the algorithm, we utilize the Crank–Nicolson method in time and use the Adams–Bashforth extrapolation method to deal 
with the nonlinear terms. The time discretized system is analytically proved to be unconditionally energy stable, which implies that 
the larger time step can be used for the calculation. The additional computational cost is that the nonlinear algebraic equation for 
the Lagrangian multiplier can be solved by an iterative method such as Newton method with negligible computational complexity. 
In addition, we employ the fast Fourier spectral method in space. The computational complexity of the proposed numerical scheme 
is 𝑂(𝑁 log𝑁), where 𝑁 is the mesh grid size. Furthermore, our method can be performed to a GPU-accelerated discrete Fourier 
transform (DFT) implementation, which can be executed multiple times faster than CPU-only alternatives. Extensive numerical tests 
have been performed to demonstrate the accuracy and robustness of our method on investigating the nucleation and transition of 
quasicrystalline structure.

The outline of this paper is organized as follows. In Section 2, we briefly review the tenth- and eighth-order model by the varia-

tional derivation and introduce the Lagrange multiplier approach into the gradient flows. We develop the efficient implementation 
procedures based on the Fourier spectral method and the Crank-Nicolson method in Section 3. In Section 4, we present extensive 
numerical tests to investigate the nucleation and transition process of different quasicrystalline states. The concluding remarks are 
summarized in Section 5.

2. Models and the time-discretized schemes

In order to motivate the investigation on the nucleation of quasicrystals and crystals, we briefly review the variational derivation 
for the gradient flow dynamics. Let us denote (𝜙, 𝜓) = ∫Ω 𝜙(𝐱)𝜓(𝐱)𝑑𝐱 as the 𝐿2 inner product between 𝜙(𝐱) and 𝜓(𝐱) and denote ‖𝜙‖ = (𝜙, 𝜙)1∕2 as the 𝐿2 norm of 𝜙(𝐱).

2.1. Tenth-order model under the 𝐻−1 gradient flow

The dynamic governing equation can be derived by the gradient variation of the energy functional Eq. (1). Let us define the 
chemical potential as 𝜇 ∶= 𝛿∕𝛿𝜙, thus we obtain the governing equation:

𝜙𝑡 =∇ ⋅ (𝑀∇𝜇), (2a)

𝜇 =𝐿2
1
(
𝐿2
2 + 𝑟2

)
𝜙+ ′(𝜙), (2b)

where 𝑀 is the constant mobility and  ′(𝜙) = −𝜖𝜙 − 𝛼𝜙2 + 𝜙3. Since Eqs. (2) are of conservative form and require no additional 
auxiliary variable for mass conservation, various numerical techniques have been devised to construct energy-stable schemes for 
gradient flows, such as the convex splitting approach [43], stabilized approach [52], Invariant energy quadratization (IEQ) approach 
[44], and scalar auxiliary variable (SAV) approach [50]. However, these methods are constrained by the nature of 𝐹 (𝜙) as a high-

order nonlinear term. This leads to the necessity of solving large-scale nonlinear equations (convex splitting), incorporating auxiliary 
variables to ensure the stability of the modified energy (IEQ, SAV), or potentially being unable to guarantee energy stability (stabi-

lized). In order to overcome these limitations and ensure the stability of the original energy, the original model Eqs. (2) is modified 
with a time dependent Lagrangian multiplier 𝛽(𝑡) under the heuristic idea [45] as

𝜙𝑡 =∇ ⋅ (𝑀∇𝜇), (3a)

𝜇 =𝐿2
1
(
𝐿2
2 + 𝑟2

)
𝜙+ 𝛽(𝑡) ′(𝜙), (3b)

𝑑

𝑑𝑡 ∫
Ω

 (𝜙)𝑑𝐱 = 𝛽(𝑡)∫
Ω

 ′(𝜙)𝜙𝑡𝑑𝐱. (3c)

Here 𝛽(𝑡) ≡ 1 since 𝑑
𝑑𝑡
∫Ω  (𝜙)𝑑𝐱−𝛽(𝑡) ∫Ω  ′(𝜙)𝜙𝑡𝑑𝐱 = (1 −𝛽(𝑡)) 𝑑

𝑑𝑡
∫Ω  (𝜙)𝑑𝐱 = 0. Due to the identity condition 𝛽(𝑡) ≡ 1, Eqs. (3a)-(3c)

are equivalent to Eqs. (2a)-(2b). The introduction of the auxiliary variable 𝛽(𝑡) is not intended to correct mass loss (the equation is 
conservative), but to forcibly dissipate the original energy. The scheme is not restricted by specific formulations of the nonlinear part 
within the free energy and does not require the explicitly treated part of the free energy to be bounded from below. The following 
energy dissipation law can be obtained:

𝑑(𝜙)
𝑑𝑡

= −𝑀‖∇𝜇‖2 ≤ 0, (4)

by taking the 𝐿2 inner products of Eq. (2a) with 𝜇, of Eq. (2b) with 𝜙𝑡, and integrate the equalities by parts. Thus, we construct a 
3

second order numerical schemes for Eqs. (3) based on the Crank-Nicolson method as follows:
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𝜙𝑛+1 −𝜙𝑛

Δ𝑡
=∇ ⋅ (𝑀∇𝜇𝑛+ 1

2 ), (5a)

𝜇
𝑛+ 1

2 = (Δ + 1)2
(
(Δ + 𝑞2)2 + 𝑟2

)
𝜙
𝑛+ 1

2 + 𝛽
𝑛+ 1

2  ′
(
𝜙
𝑛+ 1

2
)
, (5b)(

(
𝜙𝑛+1)−(

𝜙𝑛
)
,1
)
= 𝛽

𝑛+ 1
2
( ′(𝜙𝑛+ 1

2 ), 𝜙𝑛+1 − 𝜙𝑛
)
, (5c)

where 𝜙𝑛+ 1
2 = (3𝜙𝑛 − 𝜙𝑛−1)∕2. The Lagrange multiplier 𝛽(𝑡) can be computed by the Newton iteration. Then we can obtain the 

following energy dissipation law with the time discretized formation:

Theorem 1. The numerical solutions of the numerical scheme Eqs. (5a)-(5a) satisfy the energy dissipative law as follows:

(𝜙𝑛+1) − (𝜙𝑛)
Δ𝑡

= −𝑀
(
∇𝜇𝑛+ 1

2 ,∇𝜇𝑛+ 1
2
) ≤ 0, (6)

where (𝜙𝑛+1) =𝐿2
1(𝐿

2
2 + 𝑟2)(𝜙𝑛+1)2∕2 +(

𝜙𝑛+1).

Proof. Let us take the inner products of Eq. (5a) with 𝜇𝑛+ 1
2 and of Eq. (5b) with −(𝜙𝑛+1 − 𝜙𝑛)∕Δ𝑡, and integrate the summation of 

multiplying Eq. (5c) with 1∕Δ𝑡, which leads to the following:

(𝜙𝑛+1) − (𝜙𝑛)
Δ𝑡

= 1
2Δ𝑡

(Δ + 1)2
(
(Δ + 𝑞2)2 + 𝑟2

)(
(𝜙𝑛+1)2 − (𝜙𝑛)2

)
+ 1

Δ𝑡

( (𝜙𝑛+1) − (𝜙𝑛)
)

= (Δ+ 1)2
(
(Δ + 𝑞2)2 + 𝑟2

)(
𝜙
𝑛+ 1

2 ,
𝜙𝑛+1 − 𝜙𝑛

Δ𝑡

)
+ 𝛽

𝑛+ 1
2
( ′(𝜙𝑛+ 1

2
)
,
𝜙𝑛+1 − 𝜙𝑛

Δ𝑡

)
=
(
𝜇
𝑛+ 1

2 ,
𝜙𝑛+1 − 𝜙𝑛

Δ𝑡

)
= −𝑀

(
∇𝜇𝑛+ 1

2 ,∇𝜇𝑛+ 1
2
) ≤ 0. (7)

This completes the proof. □

2.2. Conservative eighth-order model under the 𝐿2 gradient flow

The supercritical instability takes the variational derivation of free energy  with respect to 𝜙 as follows:

𝜕𝑡𝜙 =− 𝛿∕𝛿𝜙 = −𝐿2
1(𝐿

2
2 + 𝑟2)𝜙− ′(𝜙), (8)

with the Neumann boundary condition 𝐧 ⋅∇𝜙 = 0. However, this reaction-diffusion equation violates the law of conservation of mass. 
Following the method in [46], a modified model has been established by adding a nonlocal Lagrange multiplier to conserve the mass 
as follows

𝜕𝜙

𝜕𝑡
= −𝐿2

1
(
𝐿2
2 + 𝑟2

)
𝜙− ′(𝜙) + 1|Ω| ∫

Ω

((
𝑞4 + 𝑟2

)
𝜙+ ′(𝜙)

)
𝑑𝐱. (9)

The following mass conservation profile can be obtained as

𝑑

𝑑𝑡 ∫
Ω

𝜙𝑑𝐱 = ∫
Ω

𝜕𝜙

𝜕𝑡
𝑑𝐱 =∫

Ω

(
−𝐿2

1
(
𝐿2
2 + 𝑟2

)
𝜙− ′(𝜙)

+ 1|Ω| ∫
Ω

((
𝑞4 + 𝑟2

)
𝜙− 𝜀𝜙− 𝛼𝜙2 +𝜙3

)
𝑑𝐱

)
𝑑𝐱 = 0. (10)

While the mass loss is spatially and temporally determined, the time-dependent Lagrangian multiplier may lead to nonlocal stiffness 
issue and ignore the interactions between the different lattices [47]. To overcome the dynamical difference caused by the nonlocal 
correction term, which has been investigated by the art-of-the-work studies [48,49], we introduce a Lagrange multiplier 𝛽(𝑡)

𝜕𝜙

𝜕𝑡
= −𝐿2

1
(
𝐿2
2 + 𝑟2

)
𝜙+ 𝛽(𝑡)

(
− ′(𝜙) + 1|Ω| ∫

Ω

(𝑞4 + 𝑟2)𝜙+ ′(𝜙)𝑑𝐱
)
. (11)

To simplify the expression, we denote

(𝜙) = − (𝜙) + 1|Ω| ∫
Ω

𝑞4 + 𝑟2

2
𝜙2 + (𝜙)𝑑𝐱. (12)
4

Thus, the governing equation can be modified as
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𝜕𝜙

𝜕𝑡
= −𝐿2

1
(
𝐿2
2 + 𝑟2

)
𝜙+ 𝛽(𝑡)′(𝜙), (13a)

𝑑

𝑑𝑡 ∫
Ω

(𝜙)𝑑𝐱 = 𝛽(𝑡)∫
Ω

′(𝜙)𝜙𝑡𝑑𝐱, (13b)

where 𝛽(𝑡) ≡ 1 with the initial condition 𝛽(0) = 1. Some notations should be summarized as: (i) The Lagrangian auxiliary variables 
𝛽(𝑡) approximately equals to 1. If we set the initial condition as 𝛽(0) = 1, then it is obvious that the modified system Eq. (13) is 
equivalent to Eq. (9), which indicates that 𝛽(𝑡) ≡ 1 in the modified functional. (ii) The Lagrangian multiplier 𝛽(𝑡) is only activated 
in the interfacial region (−1 < 𝜙 < 1), while it has no influence on the bulk region (𝜙 = ±1) [54]. The conservative eighth-order 
model is formulated in terms of convection-diffusion-reaction equations. Despite not being in conservative form, it still satisfies the 
conservation constraints, which has been analyzed as three consistency conditions in [55], i.e., consistency of reduction, consistency 
of mass conservation, and consistency of mass and momentum transport, respectively. (iii) Our model has transferred the nonlinear 
algebraic equation into the Lagrange multiplier and dissipated the original energy, which is opposed to a modified energy by taking 
the recently proposed SAV approach [50], IEQ approach [51], or other stabilized approaches [52,53]. Our Lagrangian multiplier 
based model performs the generalized behavior with the temporal and local impact, which holds the mass conservation by using the 
time derivation to the integral of 𝜙 as follows:

𝑑

𝑑𝑡 ∫
Ω

𝜙𝑑𝐱 = ∫
Ω

𝜕𝜙

𝜕𝑡
𝑑𝐱 = ∫

Ω

(
−𝐿2

1
(
𝐿2
2 + 𝑟2

)
𝜙+ 𝛽(𝑡)′(𝜙))𝑑𝐱

= ∫
Ω

−(𝑞4 + 𝑟2)𝜙+
𝑑
( ∫Ω (𝜙)𝑑𝐱)∕𝑑𝑡
∫Ω ′(𝜙)𝜙𝑡𝑑𝐱

′(𝜙)𝑑𝐱

= ∫
Ω

−(𝑞4 + 𝑟2)𝜙+
(
− ′(𝜙) + 1|Ω| ∫

Ω

(𝑞4 + 𝑟2)𝜙+ ′(𝜙)𝑑𝐱
)
𝑑𝐱 = 0. (14)

Furthermore, the governing equation satisfies the energy dissipation law by taking the 𝐿2 inner product of Eq. (11) with 𝜙𝑡 as 
follows:

𝑑(𝜙)
𝑑𝑡

= −‖𝜙𝑡‖2 ≤ 0. (15)

We construct a second order numerical schemes for Eqs. (13) based on the Crank-Nicolson method as follows:

𝜙𝑛+1 −𝜙𝑛

Δ𝑡
= −(Δ+ 1)2

(
(Δ + 𝑞2)2 + 𝑟2

)
𝜙
𝑛+ 1

2 + 𝛽
𝑛+ 1

2 ′(𝜙𝑛+ 1
2 ), (16a)((𝜙𝑛+1) − (𝜙𝑛),1

)
= 𝛽

𝑛+ 1
2
(′(𝜙𝑛+ 1

2 ), 𝜙𝑛+1 − 𝜙𝑛
)
, (16b)

where 𝜙𝑛+ 1
2 = (3𝜙𝑛 − 𝜙𝑛−1)∕2 is the Adams–Bashforth extrapolation. Then we can obtain the following energy dissipation law:

Theorem 2. The numerical solutions of Eq. (16) satisfies the energy dissipative law,

(𝜙𝑛+1) − (𝜙𝑛) = − 1
Δ𝑡

(
𝜙𝑛+1 − 𝜙𝑛,𝜙𝑛+1 − 𝜙𝑛

) ≤ 0, (17)

where (𝜙𝑛+1) =𝐿2
1(𝐿

2
2 + 𝑟2)(𝜙𝑛+1)2∕2 +(

𝜙𝑛+1).

Proof. Let us take the 𝐿2 inner product of (𝜙𝑛+1 − 𝜙𝑛)∕Δ𝑡 and perform the integration by parts. Thus, we can obtain that

(𝜙𝑛+1) − (𝜙𝑛) (18)

= 1
2
(Δ + 1)2

(
(Δ + 𝑞2)2 + 𝑟2

)(
(𝜙𝑛+1)2 − (𝜙𝑛)2

)
+
((𝜙𝑛+1) − (𝜙𝑛+1)

)
= (Δ+ 1)2

(
(Δ + 𝑞2)2 + 𝑟2

)(
𝜙
𝑛+ 1

2 , 𝜙𝑛+1 −𝜙𝑛
)
+ 𝛽

𝑛+ 1
2
(′(𝜙𝑛+ 1

2 ), 𝜙𝑛+1 − 𝜙𝑛
)

= − 1
Δ𝑡

(
𝜙𝑛+1 − 𝜙𝑛,𝜙𝑛+1 − 𝜙𝑛

) ≤ 0, (19)

which completes the proof. □

Before we delve into the numerical solutions and proceed with numerical validation, it is essential to provide commentary on 
relative advantages of the two models. It is significant for the mass conservation during the phase transition from liquid to solid 
crystals. The tenth-order model Eqs. (2) satisfy the mass-conserved property by taking the time derivative to the integral of 𝜙 over 
5

Ω, i.e.,
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𝑑

𝑑𝑡 ∫
Ω

𝜙𝑑𝐱 = ∫
Ω

𝜕𝜙

𝜕𝑡
𝑑𝐱 =𝑀 ∫

Ω

Δ𝜇𝑑𝐱 =𝑀 ∫
𝜕Ω

∇𝜇 ⋅ 𝐧𝑑𝑠 = 0, (20)

where 𝐧 is the unit normal vector to 𝜕Ω. The tenth-order model includes higher order spatial derivative and this will leads to 
numerical problems related to efficiency, thus it is necessary to downgrade the order of differential equations, i.e., Eqs. (11), to 
lower computational complexity. By using the introduced Lagrange multiplier 𝛽(𝑡), the total mass of 𝜙 can be conserved. From the 
numerical perspective, choosing the eighth-order system brings up weaker CFL conditions for grid sizes in time and space, which 
reduces the complexity of solving higher-order equations. However, the modified term introduced to ensure that the eighth-order 
model satisfies the mass conservation property brings new challenge to the construction of fast and stable algorithms.

3. Numerical solutions

We employ the Fourier spectral method for the computation of the two high order model. The discrete systems are established 
in two-dimension domain Ω = [0, 𝐿𝑥] × [0, 𝐿𝑦] for the convenience of explanation, which can be straightforward conducted to the 
three-dimension cases in the same manner. The computational domain is discretized with a uniform 𝑁𝑥 ×𝑁𝑦 mesh grid, where 𝑁𝑥

and 𝑁𝑦 are positive integers along the 𝑥 and 𝑦 direction. The space step is defined as ℎ = 𝐿𝑥∕𝑁𝑦 = 𝐿𝑦∕𝑁𝑡, thus the grid point is 
defined as (𝑥𝑗 , 𝑦𝑘) = (𝑗ℎ, 𝑘ℎ), where 𝑗 = 0, 1, ⋯, 𝑁𝑥 −1 and 𝑘 = 0, 1, ⋯, 𝑁𝑦 −1. Let us denote the total computational time as 𝑇 and 
the number of time iteration as 𝑁𝑡, thus the time step is defined as Δ𝑡 = 𝑇 ∕𝑁𝑡. We define 𝜙𝑛

𝑗𝑘
as an approximation of 𝜙(𝑥𝑗 , 𝑦𝑘, 𝑛Δ𝑡)

and 𝑛 is the superscript 𝑛-th time level. Let us first define the discrete Fourier transform 𝔉 and the inverse version 𝔉−1 as

�̂�𝑛
𝑝𝑞

=𝔉(𝜙𝑛
𝑗𝑘
) = 1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑
𝑗=0

𝑁𝑦−1∑
𝑘=0

𝜙𝑛
𝑗𝑘
𝑒−𝑖

(
𝜉𝑝𝑥𝑗+𝜂𝑞𝑦𝑘

)
, (21)

𝜙𝑛
𝑗𝑘

=𝔉−1(�̂�𝑛
𝑝𝑞) =

1
𝑁𝑥𝑁𝑦

𝑁𝑥−1∑
𝑝=0

𝑁𝑦−1∑
𝑞=0

�̂�𝑛
𝑝𝑞𝑒

𝑖
(
𝜉𝑝𝑥𝑖+𝜂𝑞𝑦𝑗

)
, (22)

where variables 𝜉𝑝 and 𝜂𝑞 are defined as 𝜉𝑝 = 2𝜋𝑗∕𝐿𝑥 and 𝜂𝑞 = 2𝜋𝑘∕𝐿𝑦, respectively. Thus, the 𝑠-oder discrete Laplacian profiles can 
be recast with the discrete Fourier transformation as

Δ𝑠
𝑑
𝜙𝑛
𝑗𝑘

= (−1)𝑠 1
𝑁𝑥𝑁𝑦

𝑁𝑥−1∑
𝑝=0

𝑁𝑦−1∑
𝑞=0

(
𝜉2𝑝 + 𝜂2𝑞

)𝑠

�̂�𝑘
𝑝𝑞𝑒

𝑖
(
𝜉𝑝𝑥𝑗+𝜂𝑞𝑦𝑘

)
, 𝑠 = 1,⋯ ,4. (23)

3.1. Discrete tenth-order model and efficient implementation

Let us denote the linear operator as  ∶= Δ𝑑 and  ∶= (Δ𝑑 + 1)2
(
(Δ𝑑 + 𝑞2)2 + 𝑟2

)
, thus the discrete formulation can be imple-

mented as

𝜙𝑛+1 −𝜙𝑛

Δ𝑡
=𝜇𝑛+ 1

2 , (24a)

𝜇
𝑛+ 1

2 = 𝜙𝑛+ 1
2 + 𝛽

𝑛+ 1
2  ′(𝜙𝑛+ 1

2
)
, (24b)((

𝜙𝑛+1)−(
𝜙𝑛

)
,1
)
𝑑
= 𝛽

𝑛+ 1
2
( ′(𝜙𝑛+ 1

2
)
, 𝜙𝑛+1 − 𝜙𝑛

)
𝑑
, (24c)

where 𝜙𝑛+ 1
2 = (3𝜙𝑛 − 𝜙𝑛−1)∕2.

Solutions for discrete system Eqs. (24a)-(24c).

Let us derive from Eqs. (24a)-(24c) that

𝜙𝑛+1

Δ𝑡
− 

2
𝜙𝑛+1 = 𝜙𝑛

Δ𝑡
+ 

2
𝜙𝑛 + ′(𝜙𝑛+ 1

2
)
𝛽
𝑛+ 1

2 . (25)

By defining the linear operator (𝜙) ∶= (𝐼∕Δ𝑡 − ∕2)𝜙 and applying the inverse operator −1 to both sides of Eq. (25), we can 
obtain that

𝜙𝑛+1 =𝑛+1
1 + 𝛽

𝑛+ 1
2𝑛+1

1 , (26a)

with 𝑛+1
1 ∶= 1

Δ𝑡
−1(𝜙𝑛) + 1

2
−1

(𝜙𝑛
)

and 𝑛+1
1 ∶= −1

( ′(𝜙𝑛+ 1
2
))

. (26b)

Then let us take Eq. (26b) into Eq. (24c) for solving 𝛽𝑛+
1
2 as follows:((𝑛+1 + 𝛽

𝑛+ 1
2𝑛+1)−(

𝜙𝑛
)
,1
)
= 𝛽

𝑛+ 1
2
( ′(𝜙𝑛+ 1

2
)
,𝑛+1 + 𝛽

𝑛+ 1
2𝑛+1 −𝜙𝑛

)
, (27)
6

1 1 1 1 𝑑
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which is a fourth-order nonlinear algebraic equation for 𝛽𝑛+
1
2 and can be solved by the Newton iterative method. It should be pointed 

out that our purpose is to find the approximate solutions around 𝛽𝑛+
1
2 = 1, which is simple with lower computation cost if we use 

𝛽0 = 1 as the initial condition. With the updated 𝛽𝑛+1, we can obtain 𝜙𝑛+1 by solving Eq. (26a).

3.2. Discrete and conservative eighth-order model and efficient implementation

The discrete formulation for Eq. (9) can be implemented as

𝜙𝑛+1 −𝜙𝑛

Δ𝑡
= −𝜙𝑛+ 1

2 + 𝛽
𝑛+ 1

2 ′(𝜙𝑛+ 1
2 ), (28a)((𝜙𝑛+1)− (𝜙𝑛

)
,1
)
𝑑
= 𝛽

𝑛+ 1
2
(′(𝜙𝑛+ 1

2
)
, 𝜙𝑛+1 − 𝜙𝑛

)
𝑑
, (28b)

where 𝜙𝑛+ 1
2 = (3𝜙𝑛 − 𝜙𝑛−1)∕2.

Solutions for discrete system Eqs. (28a)-(28b).

Let us derive from Eqs. (28a)-(28b) that

𝜙𝑛+1

Δ𝑡
+ 

2
𝜙𝑛+1 = 𝜙𝑛

Δ𝑡
− 

2
𝜙𝑛 + 𝛽

𝑛+ 1
2 ′(𝜙𝑛+ 1

2
)
. (29)

Then we define the linear operator (𝜙) ∶= (𝐼∕Δ𝑡 +∕2)𝜙 and apply the inverse operator −1 to both sides of Eq. (25), which leads 
to the follows:

𝜙𝑛+1 =𝑛+1
2 + 𝛽

𝑛+ 1
2𝑛+1

2 , (30a)

𝜙𝑛+1,⋆ =𝑛+1
2 +𝑛+1

2 , (30b)

with 𝑛+1
2 ∶= 1

Δ𝑡
−1(𝜙𝑛) − 1

2
−1

(𝜙𝑛
)

and 𝑛+1
2 ∶=−1

(′(𝜙𝑛+ 1
2
))

. (30c)

Then we provide two methods to update 𝛽𝑛+
1
2 :

Method 1. Let us take Eq. (30a) into Eq. (28b) as follows:((𝑛+1
2 + 𝛽

𝑛+ 1
2𝑛+1

2
)
− (𝜙𝑛

)
,1
)
= 𝛽

𝑛+ 1
2
(′(𝜙𝑛+ 1

2
)
,𝑛+1

2 + 𝛽
𝑛+ 1

2𝑛+1
2 − 𝜙𝑛

)
𝑑
. (31)

By solving the nonlinear functional Eq. (31) with 𝛽0 = 1 based on the Newton iterative method, we can calculate 𝛽𝑛+
1
2 . The iterative 

method used for the computation of Eq. (27) is efficient and the computational burden is negligible by taking 𝛽0 = 1 as the initial 
condition.

Method 2. Let us take 𝜙𝑛+1,⋆ into Eq. (28b) for solving 𝛽𝑛+
1
2 as follows:((𝜙𝑛+1,⋆)− (𝜙𝑛

)
,1
)
= 𝛽

𝑛+ 1
2
(′(𝜙𝑛+ 1

2
)
, 𝜙𝑛+1,⋆ − 𝜙𝑛

)
𝑑
. (32)

By solving an explicit functional Eq. (32), we can calculate 𝛽𝑛+
1
2 . It should be remarked that (𝜙) is highly nonlinear and brings 

expensive computational complexity for the calculation comparing to  (𝜙) in Eq. (27). Thus, 𝜙𝑛+1,⋆ is defined as the intermediate 
variable for the explicit computation of 𝛽𝑛+

1
2 . After updating 𝛽𝑛+

1
2 by 𝐌𝐞𝐭𝐡𝐨𝐝 𝟏 or 𝐌𝐞𝐭𝐡𝐨𝐝 𝟐, we can solve 𝜙𝑛+1 by recalculating 

Eq. (30a).

Several important notations should be pointed out here: (i) The Allen-Cahn type equation satisfies the maximum principle as 
discussed in the existing literature [57]. In Eq. (13), we introduce a finite Lagrangian term to the eighth-order model in order to 
conserve mass, without affecting the solutions that satisfy the maximum bound principle [58]. Therefore, the solution of Eq. (13) is 
bounded, and the bound is affected by the parameters 𝜖 and 𝛼 in the polynomial function  (𝜙). The space-time Lagrange multiplier, 
which employs the Karush-Kuhn-Tucker conditions as a constraint, ensures the preservation of positivity within bounds. (ii) While the 
maximum bound principle akin to the Allen–Cahn equation has not been formally established for the Cahn–Hilliard type equation, 
the boundedness of solutions for this type of equation can be explored [61]. As the negative biharmonic operator in the Cahn–Hilliard 
type equation is not negative diagonally dominant like the Laplace operator in the Allen–Cahn equation, the upwind-convex splitting 
method, presented in reference [62], provides an original structure-preserving scheme. Therefore, the boundedness of the solution 
of the tenth-order model in Eq. (3) can be verified using the upwind-convex splitting method proposed in reference [59]. For more 
comprehensive information, the reader is referred to [60].

4. Numerical validations

In this section, we implement various tests to verify the efficiency of the proposed method and reveal the transition pathways 
7

during the nucleating process. We first investigate the comparison effect of various numerical methods with the proposed method. 
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Then we demonstrate the phase diagram of different stable states in 2D 𝜖 − 𝛼 plane. Furthermore, we perform the quantitative mea-

surements on the energy dissipation and mass error estimate. Additionally, we demonstrate the stable quasicrystalline and crystalline 
pattern in 3D space and the transition pathway between different state. Unless otherwise specified, the following parameters are 
chosen for the computation: 𝑟 = 0.01, 𝑞 = 2 cos(𝜋∕12), ℎ = 0.5 and Δ𝑡 = 0.1ℎ.

4.1. Comparison and verification of various numerical methods

In this subsection, we investigate the comparison effect by taking various methods, i.e., the Crank-Nicolson based implicit method, 
IEQ method, SAV method, and the proposed Lagrange multiplier method, respectively. The Crank-Nicolson based implicit time 
discretization method overcomes the limitation of time step size, but at the expense of significantly increased computational cost. 
Furthermore, it is hard to propose the unconditionally stable numerical algorithm. The IEQ method necessitates by solving linear 
equations with intricate variable coefficients and imposes the constraint that the free energy density must be bounded. The SAV 
method improves upon the IEQ method by relaxing the requirements for the energy density function. However, it still requires the 
integral of the nonlinear functional in the free energy to be bounded from below. It is important to emphasize that both the SAV 
and IEQ methods operate on a modified energy rather than the original energy. The Lagrange multiplier method inherits most of the 
advantages of the SAV and IEQ methods, and it also avoids the requirement for the boundedness of the energy density functional. 
However, it comes with a drawback of solving a linear equation with a small computational cost. Taking the eight-order equation as 
an example, we first establish the discrete systems of these algorithms based on the Crank-Nicolson method as follows:

Crank-Nicolson-based implicit:

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
= −(Δ+ 1)2

(
(Δ + 𝑞2)2 + 𝑟2

)
𝜙
𝑛+ 1

2

− ′(𝜙𝑛+ 1
2 ) + 1|Ω| ∫

Ω

(
𝑞4 + 𝑟2

)
𝜙
𝑛+ 1

2 + ′(𝜙𝑛+ 1
2
)
𝑑𝐱.

(33)

IEQ:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
+ (Δ+ 1)2

(
(Δ + 𝑞2)2 + 𝑟2

)
𝜙
𝑛+ 1

2 +  ′(𝜙𝑛+ 1
2 )√

 (𝜙𝑛+ 1
2 ) +𝐶𝐼𝐸𝑄

𝑢
𝑛+ 1

2

− 1|Ω| ∫
Ω

⎛⎜⎜⎜⎝
(
𝑞4 + 𝑟2

)
𝜙
𝑛+ 1

2 +  ′(𝜙𝑛+ 1
2 )√

 (𝜙𝑛+ 1
2 ) +𝐶𝐼𝐸𝑄

𝑢
𝑛+ 1

2

⎞⎟⎟⎟⎠
𝑑𝐱 = 0,

𝑢𝑛+1 − 𝑢𝑛 =  ′(𝜙𝑛+ 1
2 )(𝜙𝑛+1 − 𝜙𝑛)

2
√

 (𝜙𝑛+ 1
2 ) +𝐶𝐼𝐸𝑄

.

(34)

Here, 𝑣(𝑡, 𝜙) =
√ (𝜙) +𝐶𝐼𝐸𝑄 is the auxiliary variable, where 𝐶𝐼𝐸𝑄 is a positive constant that ensures  (𝜙) ≥ −𝐶𝐼𝐸𝑄.

SAV:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
+ (Δ+ 1)2

(
(Δ + 𝑞2)2 + 𝑟2

)
𝜙
𝑛+ 1

2 +  ′(𝜙𝑛+ 1
2 )√

∫Ω  (𝜙𝑛+ 1
2 )𝑑𝐱 +𝐶𝑆𝐴𝑉

𝑣
𝑛+ 1

2

− 1|Ω| ∫
Ω

⎛⎜⎜⎜⎝
(
𝑞4 + 𝑟2

)
𝜙
𝑛+ 1

2 +  ′(𝜙𝑛+ 1
2 )√

∫Ω  (𝜙𝑛+ 1
2 )𝑑𝑥+𝐶𝑆𝐴𝑉

𝑣
𝑛+ 1

2

⎞⎟⎟⎟⎠
𝑑𝐱 = 0,

𝑣𝑛+1 − 𝑣𝑛 =
∫Ω  ′(𝜙𝑛+ 1

2 )(𝜙𝑛+1 − 𝜙𝑛)𝑑𝐱

2
√

∫Ω  (𝜙𝑛+ 1
2 )𝑑𝐱 +𝐶𝑆𝐴𝑉

.

(35)

Here, 𝑣(𝑡) =
√

∫Ω  (𝜙)𝑑𝐱 +𝐶𝑆𝐴𝑉 is the scalar auxiliary variable, where 𝐶𝑆𝐴𝑉 is a positive constant that ensures ∫Ω  (𝜙)𝑑𝑥 ≥
−𝐶𝑆𝐴𝑉 .

To conduct a rigorous comparative analysis of the efficacy of these four numerical algorithms, we have instantiated the simulation 
with identical stochastic initial conditions to ascertain the veracity of the nucleation state in the crystallization process. The data 
presented in Fig. 1 illustrate the configurations at the final computational time 𝑇 = 10. A critical examination of the results reveals 
that the delineation of the crystal interface, as demarcated by the red contours, exhibits varying degrees of precision and acuity 
against the blue backdrop representing the crystal matrix. Notably, the interface delineated by the proposed Lagrange multiplier 
method (Fig. 1(d)) manifests with pronounced sharpness and definition, suggesting its superior capability in capturing intricate 
interface details with heightened accuracy. Upon scrutinizing the homogeneity of the blue crystal lattice, it is discernible that the 
configurations engendered by both the Crank-Nicolson based implicit method (Fig. 1(a)) and our proposed method (Fig. 1(d)) are 
characterized by a more consistent and orderly pattern. In contrast, the structures portrayed by the IEQ (Fig. 1(b)) and SAV (Fig. 1(c)) 
8

methods betray minor anomalies within certain locales. In the ideal scenario of a phase transition, the crystal lattice is expected to 
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Fig. 1. Different crystalline phase transition by taking four different methods with the same parameters: (a) the Crank-Nicolson based implicit (CNI) method, the 
invariant energy quadratization (IEQ) method, the scalar auxiliary variable (SAV) method, (d) our proposed Lagrange multiplier method (Ours). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The 𝐿2 numerical errors at 𝑇 = 1 for the approximate phase variable 𝜙 of the presumed exact solution Eq. (36), that are computed using for different numerical 
method.

evince a certain symmetry. An analysis of the results indicates that while all methods approximate this symmetry to some extent, the 
Crank-Nicolson based implicit method and our Lagrange multiplier method are distinguished by their more faithful representation of 
symmetric structures. Moreover, the simulation results attributable to the Lagrange multiplier method suggest a superior degree of 
smoothness and continuity, a metric by which the alternative methods also deliver satisfactory performance. Each algorithm exhibits 
its unique attributes and strengths. Our proposed method is distinguished by its discernible advantages in the clarity of the interface, 
the uniformity of structural patterns, and the maintenance of symmetry and smoothness. A detailed numerical error analysis is 
requisite for the derivation of more definitive quantitative assessments of these observations.

We assume the following function

𝜙(𝑥, 𝑦, 𝑡) = sin(𝑥) cos(𝑦) cos(𝑡), (36)

to be the exact solution and impose some suitable force fields such that the given solution can satisfy the system (11). We compare 
the results obtained by using Eqs. (33), (34), (35), and (16) as shown in Fig. 2. We present the 𝐿2 error profiles for the phase 
variable 𝜙, contrasting the numerically simulated solutions with the analytical benchmarks at 𝑇 = 1 across a spectrum of temporal 
discretizations. The graphical elucidation of the results indicates that our method manifests the most diminutive error, signifying its 
superlative precision in the context of this examination. The errors associated with the IEQ and SAV methods are observed to be in 
close contention, whereas the Crank-Nicolson implicit approach incurs the most substantial error magnitude. Notwithstanding the 
elevated error associated with the Crank-Nicolson implicit scheme, the error augmentation trajectories with escalating time steps 
demonstrate a relative uniformity amongst the investigated methods. This uniformity implies that the stability of the methods may 
be deemed acceptable within the scrutinized temporal resolution domain. It is imperative to acknowledge that the incorporation 
of an auxiliary variable in both the SAV and IEQ methods necessitates the establishment of a lower bound for the integral of the 
free energy functional. Although the polynomial function  is intrinsically bounded, this is contingent on the parameters 𝛼 and 
𝜖, which are pivotal in delineating the phase transition between crystal states and the nexus of energy to nucleation phenomena. 
Consequently, the selection of an auxiliary variable for the SAV or IEQ methods poses a significant challenge, as it is requisite to 
ascertain a meaningful lower bound that confers validity to the auxiliary construct.

4.2. The phase transition of different stable order parameters in 2D dimension

In this subsection, we perform the quasiperiodic structure with periodic boundary conditions in a square domain by taking 
the pseudospectral method. The computation is performed with the eighth-order model Eqs. (13) under the 𝐿2 gradient flow. The 
9

computational domain is set as Ω = [0, 256] × [0, 256] with a 512 × 512 mesh grid. The initial conditions are chosen as
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Fig. 3. Various specific stable ordered states, such as FCC, Lamella, T6, QC, LQ, and BCC and the corresponding phase diagram under different parameter combinations 
in 2D space. The x-axis is the range of 𝜖 and the y-axis is the range of 𝛼. The inset figures circled by the black lines are the close-up views of different indicated 
crystalline states in real space. The schematic diagrams of prominent diffraction patterns in the reciprocal space have been demonstrated by the spatial combinations 
of white solid circles based on the real space patterns.

𝜙(𝑥, 𝑦,0) = �̄�+ 0.01rand(𝑥, 𝑦), (37)

where rand(𝐱) is the random number between −1 and 1. The unit cell is generally chosen to hold about 40 wavelengths in the 
computational region. Different stable order parameter solutions within inhomogeneous state can be obtained by the proposed 
method, including 6-fold face centered cubic (FCC), Lamella state, 12-fold quasicrystalline state (QC), transformed 6-fold crystalline 
state (T6), lamellar quasicrystalline state (LQ), and 6-fold body centered cubic (BCC). Note that in addition to classical crystalline 
states with global symmetry and periodicity, such as FCC, BCC, Lamella, and QC, there are other stable states (LQ and T6) with 
local symmetry and quasiperiodicity that cannot be neglected. We have plotted the specific stable order parameter in the 𝜖− 𝛼 plane 
as can be seen from Fig. 3. For this simulation, we apply �̄� = 0 for Lamella, T6, QC, and LQ, and apply �̄� = −0.25 for FCC and 
BCC. The sub-figures in Fig. 3 show the stable structures in real and it reciprocal spaces with different combinations of (𝛼, 𝜖) as 
FCC (0.01, 0.04), Lamella (0.15, 0.06), QC (0.6, 0.005), T6 (0.26, 0.07), LQ (0.75, 0.015), and BCC (0.8, 0.03), respectively. What we 
should point out is that this result demonstrates several stable states with special parameters combinations during the examination 
of our proposed algorithm. Our method works well for the construction of quasicrystalline and crystalline structures. The generality 
of the Lifshitz-Petrich model Eq. (1) guarantees that more complicated stable patterns can be discovered by traversing all parameter 
combinations and amplitudes. Furthermore, we plot the close-up views of different indicated crystalline states in the inset figures 
circled by the black lines in real space. The schematic diagrams of prominent diffraction patterns in the reciprocal space have 
demonstrated by the spatial combinations of white solid circles based on the real space patterns, which is obtained by the absolute 
value of the Fourier-transformed density [56].

4.3. Energy stability and mass conservation

In this section, we perform the numerical investigation on the above crystalline states in Fig. 3. We demonstrate the numerical 
energy dissipation based on the tenth-order scheme in Fig. 4 and the eighth-order scheme in Fig. 5, respectively. We compute the 
time evolution of the normalized discrete energy (𝜙𝑛)∕(𝜙0). We choose the same initial conditions and parameter settings as those 
in Section 4.2. As can be seen from Fig. 4 and Fig. 5, it is obvious that the time discretized energy curves of the above six cases are 
indeed non-increasing, which corresponds to the proposed Theorem 1 and Theorem 2. Therefore, this phenomenon indicates that 
our algorithm can guarantee the original energy dissipates, which means that large time steps can be applied to the computation. 
We should provide some explanations for the differences between Fig. 4 and 5. It can be seen that a jump-type transitional effect 
for the eighth-order model. This phenomenon is attributed to the complexity within the system. In complex nonlinear systems, the 
dissipation of energy may be influenced by various factors such as random initial conditions, interactions, and the characteristics 
of the dissipation process. The complexity of these factors may result in non-monotonic behavior or highly jump-type transitions 
in the temporal variation of the energy function. The highly variable energy involved in the phase transition of quasicrystals from 
a physical perspective is not discussed within the scope of this paper. The mass conservation is the basic property during the 
crystalline transition and nucleation, which requires us to investigate whether the proposed numerical scheme satisfies this property. 
Let us define the mass error during the evolution as the discrete 𝑙2-norm as the following functional:

𝑒𝑛 =

√√√√√𝑁𝑥∑ 𝑁𝑦∑
𝜙𝑛
𝑖,𝑗
∕(𝑁𝑥𝑁𝑦) −

𝑁𝑥∑ 𝑁𝑦∑
𝜙0
𝑖,𝑗
∕(𝑁𝑥𝑁𝑦), (38)
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Fig. 4. Temporal evolution of the non-increasing discrete energy by taking the eighth-order scheme (Eq. (24)) with different quasicrystalline and crystalline states, 
i.e., FCC, BCC, LQ, Lamella, T6, and QC. Note that the total energy has been normalized by the initial energy. The time step used for this investigation is Δ𝑡 =0.01ℎ.

Fig. 5. Temporal evolution of the non-increasing discrete energy by taking the eighth-order scheme (Eq. (28)) with different quasicrystalline and crystalline states, 
i.e., FCC, BCC, LQ, Lamella, T6, and QC. Note that the total energy has been normalized by the initial energy. The time step used for this investigation is Δ𝑡 =0.01ℎ.

Fig. 6. Time evolution of the mass error obtained by (a) tenth-order scheme and (b) eighth-order scheme with different quasicrystalline and crystalline states, i.e., 
FCC, BCC, LQ, Lamella, T6, and QC.

which considers the difference between the mass density at the 𝑛-th step and the initial mass density. We apply the two crystalline 
state model to estimate the mass errors during the evolution process, which can be seen from Fig. 6. In general, the comparison 
11

results demonstrate that the mass error of our algorithm is within the acceptable range.
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Table 1

Convergence rate and 𝑙2 error of the tenth-order and eighth-

order schemes. The time step Δ𝑡 = 0.1ℎ is chosen for the pro-

posed numerical schemes.

ℎ Tenth-order scheme Eighth-order scheme

𝑙2 error Rate 𝑙2 error Rate

0.1 3.846 × 10−4 3.107 × 10−4
0.05 9.122 × 10−5 2.08 7.217 × 10−5 2.11

0.025 2.197 × 10−5 2.06 1.682 × 10−5 2.10

0.0125 5.207 × 10−6 2.08 4.065 × 10−6 2.05

4.4. Convergence tests

In this section, we perform the convergence test, by considering the Cauchy error, to verify the second-order accuracy of our 
proposed method by using various simulations with increasingly finer mesh grid ℎ = 1, 0.5, 0.25, and 0.125 in the same computational 
domain Ω = [0, 64] × [0, 64]. Note that the Cauchy Error, which is defined as the difference between any two terms of a sequence and 
not with the exact solution, is widely used to measure the error without knowing the exact solution. Furthermore, the accuracy of the 
algorithm can be scrutinized by employing the manufactured solutions approach. This method commences by assuming an analytic 
solution, from which an artificial “true” solution is constructed, enabling the validation of computed outcomes [55]. We have chosen 
to use the Cauchy error criterion since it allows us to avoid the need to assume an accurate solution beforehand and evade a great 
deal of post-processing work to validate the calculated results. The initial conditions are chosen as follows:

𝜙(𝑥, 𝑦,0) = 0.25 + 0.25sin(2𝜋𝑥) sin(2𝜋𝑦), (39)

and the time step is set as Δ𝑡 = 0.1ℎ. Thus, the crystalline phase separation will be performed under the initial conditions. Due 
to the absence of analytical solutions, let us assume that the reference solution obtained by the fine spatial step ℎ = 1e-3 with a 
fine temporal step Δ𝑡 = 1e-4. By defining the error of the numerical scheme as the discrete 𝑙2-norm of the difference between the 
corresponding grid and the reference solutions cells neighboring it, i.e., 𝑒ℎ, Δ𝑡 ∶= 𝜙ℎ, Δ𝑡 − 𝜙𝐫𝐞𝐟 , thus we can define the convergence 
ratio of the successive errors as log2

(‖𝑒ℎ, Δ𝑡‖2∕‖𝑒ℎ∕2,Δ𝑡∕2‖2). For the tenth-order scheme and the eighth-order scheme, we apply 
the numerical method over time 𝑇 = 50 with Δ𝑡 = 0.1ℎ under each grid, respectively. The ratio of the numerical errors is 2 since ‖𝑒ℎ, Δ𝑡‖2 = 𝑂(ℎ2) is defined and Δ𝑡 = 0.1ℎ is chosen for the error estimate. The 𝑙2 errors and the convergence ratios are listed in 
Table 1, respectively. The numerical results suggest that the discrete schemes of Eq. (24) and Eq. (28) are both second-order accurate 
in space and time, which corresponds to the expected discretization.

4.5. The phase transition of different stable order parameters in 3D dimension

In order to demonstrate the possible three-dimensional equilibrium phase structure, we have performed the proposed procedure 
on the crystalline generation as shown in Fig. 7, which is plotted by the 3D order parameters. We take the eighth-order model 
Eqs. (13) as the example to illustrate the results in 𝛼 − 𝜖 plane. The computational domain is chosen as Ω = [0, 50] × [0, 50] × [0, 50]
with a 100 × 100 × 100 mesh grid. We design the unit computational cell to hold about 20 wavelengths. The initial conditions are 
chosen as

𝜙(𝑥, 𝑦, 𝑧,0) = �̄�+ 0.1rand(𝑥, 𝑦, 𝑧), (40)

for the six cases, where rand(𝑥, 𝑦, 𝑧) is the random number between −1 and 1. We choose the same parameters as that in Sec. 4.2. 
For the three dimensional simulation, we apply �̄� = 0 for Lamella, T6, QC, and LQ, and apply �̄� = −0.1 for FCC and BCC. As can be 
seen from Fig. 7, we have demonstrated the three-dimensional pattern in the 𝛼 − 𝜖 plane. For each indicated crystalline state, the 
left sub-figure shows the snapshot of the iso-surface of {𝜙 = −0.1}, and the right sub-figure shows the perpendicular cross-sections 
on the surfaces of the cubic computational domain. The sub-figures in Fig. 7 show the stable structures in real and reciprocal spaces 
with different combinations of (𝛼, 𝜖) as FCC (0.02, 0.03), Lamella (0.11, 0.068), QC (0.65, 0.008), T6 (0.22, 0.064), LQ (0.78, 0.011), 
and BCC (0.82, 0.037), respectively. As can be seen from the results of the {𝜙 = −0.1} iso-surface, we can obviously see that the 
stable order crystalline structures have been obtained by our proposed method. In order to confirm the three-dimensional results, 
we have demonstrated three perpendicular cross-sections on the surfaces of the unit cubic domain. By comparing the results, we can 
realize that although there are differences in symmetry and rotation patterns between two- and three-dimensional structures, which 
are caused by the fluctuations in different thermodynamics, we can obviously see the periodic and symmetrical crystalline pattern 
by projecting onto the surface of the unit cubic domain.

4.6. The transition pathway between specific transient state

In this subsection, we demonstrate the transition pathway between different quasicrystalline and crystalline stable states as shown 
in Fig. 8 and Fig. 9. The sub-figures demonstrate the phase patterns of corresponding crystallines in 3D space and the projected 
12

patterns in 2D plane. The transferred energy is denoted as Δ , whose positive value represents the energy that needs to be absorbed 
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Fig. 7. Various specific stable ordered states, such as FCC, Lamella, T6, QC, LQ, and BCC and the corresponding phase diagram under different parameter combinations 
in 3D space. The x-axis is the range of 𝜖 and the y-axis is the range of 𝛼. For each indicated crystalline state, the left sub-figure shows the snapshot of the iso-surface 
of {𝜙 = −0.1}, the right sub-figure shows the perpendicular cross-sections on the surfaces of the cubic computational domain.

Fig. 8. Dynamic behaviors and transition pathways between different stable order states, including QC to BCC, BCC to LQ, and QC to LQ, respectively. The sub-figures 
demonstrate the phase patterns of corresponding crystalline states in 3D space and the projected patterns in the 2D plane. The transferred energy is denoted as Δ , 
whose positive value represents the energy that needs to be absorbed for the transition, and vice versa. The red dashed-dot lines represent the direction of transition 
caused by the energy absorption and the green dashed lines represent the direction of transition caused by the energy release.

for the transition, and vice versa. The red dashed-dot lines represent the direction of transition caused by the energy absorption and 
the green dashed lines represent the direction of transition caused by the energy release. As can be seen from the results, it is obvious 
that the transition requires absorbing energy to be metastable and release the energy to reconstruct novel crystalline structures, which 
corresponds to Ostwald’s step rule [63]. As can be seen from Fig. 8, we can obtain the following three transition pathways: (i) From 
QC state to the BCC state by absorbing energy Δ = 3.7e-2 and releasing the energy Δ = 4.7e-2 with (𝛼, 𝜖) = (0.95, 0.05). (ii) From 
BCC state to the LQ state by absorbing energy Δ = 1.8e-2 and releasing the energy Δ = 2.3e-2 with (𝛼, 𝜖) = (0.7, 0.017). (iii) From 
QC state to the LQ state by absorbing energy Δ = 2.9e-2 and releasing the energy Δ = 4.4e-2 with (𝛼, 𝜖) = (0.82, 0.024). As can 
be seen from Fig. 9, we can obtain the following three transition pathways: (i) From QC state to the T6 state by absorbing energy 
Δ = 1.9e-2 and releasing the energy Δ = 2.3e-2 with (𝛼, 𝜖) = (0.35, 0.05). (ii) From T6 state to the Lamella state by absorbing energy 
Δ = 3.3e-2 and releasing the energy Δ = 3.7e-2 with (𝛼, 𝜖) = (0.18, 0.07). (iii) From QC state to the Lamella state by absorbing 
energy Δ = 1.6e-2 and releasing the energy Δ = 2.4e-2 with (𝛼, 𝜖) = (0.22, 0.075). As can be seen from the results, the proposed 
13

method can be utilized to account for the transition pathway and compute critical nuclei between different stable states.
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Fig. 9. Dynamic behaviors and transition pathways between different stable order states, including QC to T6, T6 to Lamella, and QC to Lamella, respectively. The 
sub-figures demonstrate the phase patterns of corresponding crystalline states in 3D space and the projected patterns in the 2D plane. The transferred energy is denoted 
as Δ , whose positive value represents the energy that needs to be absorbed for the transition, and vice versa. The red dashed-dot lines represent the direction of 
transition caused by the energy absorption and the green dashed lines represent the direction of transition caused by the energy release.

5. Conclusion

In this paper, we reported the efficient computational schemes for the nucleation and transition of quasicrystalline structure, 
which suffer from anisotropic structural incommensurability and are significant for revealing material properties. Within the frame-

work of the Landau theory, we established two phase field based models to investigate the transition process by taking the variational 
derivation from the LP energy. In order to avoid the proposed reaction-diffusion system suffering the stiffness caused by the non-

linear terms and falling into the local minima, we modified the two models with the novel Lagrange multiplier method, which 
were both space and time dependent. The time discretized system was consoled by using the Crank-Nicolson method with a linear 
form, while the nonlinear terms were solved by taking the Adamm-Bashforth method to hold the second order time accuracy. We 
adopted the Fourier spectral method with 𝑂(𝑁 log𝑁) computational complexity, which can be further applied to GPU-accelerate 
implementation. To assess the performance of the proposed algorithm, we demonstrate its relative advantages in terms of stability 
and accuracy compared to the SAV method, IEQ method and the traditional fully-implicit scheme. Putting the method in the larger 
context of other methods for constructing unconditionally/conditionally stable methods can provide valuable guidance to readers on 
choosing the appropriate method for phase-field modeling of crystalline structures. We performed various numerical tests to examine 
the efficiency, accuracy, and robustness of revealing the nucleation and transition of stable quasicrystalline structure.
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