
Available online at www.sciencedirect.com

m
c
t
H
m
w
p
⃝

K
T

a
s
b
t
T
p
s
p

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 384 (2021) 113987
www.elsevier.com/locate/cma

A second-order accurate, unconditionally energy stable numerical
scheme for binary fluid flows on arbitrarily curved surfaces

Qing Xia, Qian Yu, Yibao Li∗

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

Received 19 January 2021; received in revised form 25 May 2021; accepted 1 June 2021
Available online xxxx

Abstract

In this paper, a second-order temporal and spatial accurate, unconditionally energy stable scheme for the binary fluid flows
odel on arbitrarily curved surfaces is proposed. We construct a novel surface discrete finite volume method for the surface

omputation with second-order spatial accuracy. The discretization can be obtained based on the surface mesh consisting of
riangular grids. In order to obtain second order temporal accuracy, we apply a Crank–Nicolson-type method to the Cahn–
illiard–Navier–Stokes system under the projection framework. The resulting system is solved by the Jacobi-type iteration
ethod and bi-conjugate gradient stabilized method. The proposed scheme is proved to be unconditionally energy stable,
hich implies that a larger time step can be used. Additionally, our scheme has been proved to satisfy mass conservation
roperty. Various numerical experiments are presented to demonstrate the efficiency and robustness of the proposed method.
c 2021 Elsevier B.V. All rights reserved.

eywords: Cahn–Hilliard equation; Navier–Stokes equation; Unconditionally energy-stable; Mass conservation; Laplace–Beltrami operator;
riangular surface mesh

1. Introduction

Cahn–Hilliard(CH) equation coupled with incompressible Navier–Stokes (NS) equation has received increasing
ttention across a number of disciplines [1–8]. The complicated system, Cahn–Hilliard–Navier–Stokes (CHNS)
ystem, is proposed as an alternative of sharp interface model since a topological change of the interface can
e implicitly captured [9–11]. Various approaches have been proposed to improve the efficiency and stability of
he numerical scheme. Kim et al. [12] used a conservative, second-order accurate fully implicit CHNS system.
hey established a multigrid iterative solver for the nonlinear term and decoupled the pressure term based on the
rojection method [13]. Han et al. [14] came up with the scheme of solving the CH equation based on a convex
plitting method and solving the NS equation by a pressure-projection method. Shen and Yang [15,16] derived a
hase-field model for binary fluid flows with large density and viscosity ratio. Guo et al. [17] developed a C0 finite

element formulation for the quasi-incompressible CHNS system and significantly reduced the computation costs
while resolving the characteristics of the flow. They avoided using C−1 finite element, but simply used C0 finite
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element to derive a discrete energy law for the quasi-incompressible CHNS system. Furthermore, various numerical
approaches for solving the hybrid system have been developed [18–24]. Although these numerical methods work
well for the CHNS system in rectangular or cuboid domains, the evolution of dynamic flows on arbitrarily curved
surface is still a tough challenge.

The numerical approximation of partial differential equations on arbitrary surfaces has received extensive
ttention. To solve the diffusion equations over triangular surface meshes, Chen and Wu [25–27] used a discrete
pproximation to replace the Laplace–Beltrami operators on the regular surfaces and discussed the discrete
ivergence theorem and conservation laws from the viewpoint of duality. Under their framework, the partial
erivatives of functions can be directly computed in an intrinsic and unified way. Ruuth and Merriman [28,29]
roposed the closest point method, which discretized the partial differential equations by a fixed Cartesian grid
n the embedding space. This method can treat arbitrary surfaces not limited to closed surface by involving only
he standard Cartesian differential operators. Macdonald et al. [30] proposed an novel algorithm for determining
igenvalues and eigenfunctions of the Laplace–Beltrami operator on the general curved surface based on the closest
oint method.

The main challenge is how to obtain high accuracy computing results for multi-coupled systems on the arbitrarily
urved surfaces [31]. Desbrun et al. [32] discretized the NS equations through the discrete exterior calculus
ramework, which has the differences mainly in the convective term discretization. This method was employed
ith an interpolation scheme based on Kelvin’s circulation theorem and was capable of simulating flows over

urved surfaces. Mohamed et al. [33] developed the discrete exterior calculus framework, which used an algebraic
iscretization of the interior product operator and discretized the combination of wedge product. Reuther and
oigt [34] proposed a surface finite element method for the incompressible NS equation on surfaces, which required

he standard ingredients of classical finite element implementations. Yang et al. [35,36] applied a staggered marker-
nd-cell mesh, which stored the pressure and phase variable at the center of cells. This method was easy to
mplement with the loss of accuracy and the disappearance of the energy dissipation law. The general surface
alculation methods involve non curved points in higher dimensional space.

In this paper, we aim to develop a simple and efficient numerical scheme for CHNS hybrid system on complex
urfaces. A fully discrete, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily
urved surfaces, which has second-order temporal and spatial accuracy, will be proposed. A novel surface discrete
nite volume method will be constructed for the high accuracy surface computation. It has to be pointed that we
ocus on the study on the fixed curved surfaces. Based on the NS flow on surfaces or manifolds of the existing
tudies [14,33–41], we summarize the CHNS model for the arbitrarily curved surfaces. The discrete operators,
.e., discrete gradient, divergence and Laplace–Beltrami operators, are established for the numerical computation.
hese operators are obtained by the second-order Taylor expansion in discrete space. We apply a Crank–Nicolson-

ype discretization for the coupled CHNS system under the projection framework to obtain second-order temporal
ccuracy. Here we use a biconjugate gradient stabilized method for the resulting system of discrete equations. To our
est knowledge, this is the first study focusing on binary incompressible fluid flows by the direct discrete method
hich is second temporal and spatial accuracy and satisfies the unconditional energy stability. Various numerical

xperiments will be presented to validate the performance of our proposed scheme.
The remainder of this paper is organized as follows: in Section 2, we review the CHNS system, which is resulted

rom the energetic variation of the action functional of the total hybrid energy. In Section 3, we estimate the discrete
radient operator with second-order spatial accuracy and optimize the discrete divergence and Laplacian–Beltrami
perators. Then we describe the discrete CHNS scheme with second-order temporal accuracy based on a Crank–
icolson-type method. In Section 4, we present the numerical solutions for the incompressible NS equation and

he conservative CH equation. Section 5 is devoted to present various numerical experiments. Finally, a concluding

emark is drawn in Section 6.
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2. Cahn–Hilliard–Navier–Stokes system on arbitrarily curved surfaces

Let us consider the dimensionless incompressible CHNS system on a fixed curved surface S ⊂ R3 as in [37–39]:

∂tφ(x, t) + ∇S · (φ(x, t)v(x, t)) =
1

Pe
∆Sµ(x, t),

µ(x, t) = f ′(φ(x, t)) − ϵ2∆Sφ(x, t),

ρ

(
∂v(x, t)
∂t

)
+ ρ

(
v(x, t) · ∇Sv(x, t)

2

)
+ ρ

(
∇S · (v(x, t) ⊗ v(x, t))

2

)
= −∇S p(x, t) + ∇S · (η∇Sv(x, t)) −

σ

ϵ
φ(x, t)∇Sµ(x, t),

∇S · v(x, t) = 0.

(1)

ere ∇S , ∇S· and ∆S denote the tangential gradient operator, tangential divergence operator and tangential
aplacian–Beltrami operator, respectively. We use v = (u(x, t), v(x, t),w(x, t)) to denote the velocity field of fluid
ixtures, φ(x, t) denotes the phase variable. p(x, t), µ(x, t), ρ and η are pressure, chemical potential, density and

iscosity, respectively. The term v(x, t) ⊗ v(x, t) is the tensor product. In addition, the dimensionless parameters ϵ,
and Pe are positive constants. In this paper, we only consider the fixed surfaces with closed property, so there

s no boundary conditions for this system. The total energy of the hydrodynamic system includes two parts: the
inetic energy(Ek) and the Ginzburg–Landau type of Helmholtz free energy(Eh)[42,43], which can be written as:

E = Ek + Eh =

∫
S

(
ρ|v(x, t)|2

2
+ ρ

(σϵ
2

|∇Sφ(x, t)|2 +
σ

ϵ
f (φ(x, t))

))
dx, (2)

here f (φ) = φ2(1 − φ)2/4 is the double well bulk energy and represents the hydro-phobic type of interactions.
he hybrid energy is derived through an energetic variational procedure based on entropy production [17]. With

he solution of Eq. (1), the energy dissipation law can be obtained as follows:

d E
dt

= ρ (v, vt )+
ρσ

ϵ
(µ, φt ) = ρ

(
v,−∇S p + η∆Sv −

σ

ϵ
φ∇Sµ

)
−
σρ

ϵPe
(∇Sµ,∇Sµ)−

σρ

ϵ
(µ,∇S · (φv))

= ρ (∇S · v, p)− ηρ∥∇Sv∥
2
−
σρ

ϵPe
∥∇Sµ∥

2
−
ρσ

ϵ
((vφ,∇Sµ)+ (µ,∇S · (φv)))

= −ηρ∥∇Sv∥
2
−
σρ

ϵPe
∥∇Sµ∥

2
≤ 0.

(3)

. Numerical approximations

.1. Second-order spatial accurate operators on surfaces

Let us introduce the discretization of gradient, divergence and Laplace–Beltrami operators defined on triangular
urface mesh Σ := (P, T ), where P = {pi |1 ≤ i ≤ NP} is the set of vertices and T = {Ti |1 ≤ i ≤ NT } is the
et of triangles. Here, NP and NT are the number of vertices and triangles, respectively. For j = 0, 1, . . . , s, let
j be counterclockwise relative to the outside of the polygon and satisfy ps = p0. Let us define triangle T j with

hree vertices p, p j and p j+1, where G i =
(
p + p j + p j+1

)
/3 is the centroid of this triangle as the blue triangle

n Fig. 1. The normal vector N(p) at p ∈ P can be denoted as

N(p) =

p−1∑
j=0

ω j N j/


p−1∑
j=0

ω j N j

 (4)

here N j is the unit normal vector to T j and ω j =
G j − p

−2
/
∑s−1

k=0 ∥Gk − p∥
−2. Then the outer normal vector

p(G j ) at G j can be denoted as

np
(
G j
)

=

(
G j+1 − G j

)
× N j(G j+1 − G j
)
× N j

 and np
(
G j+1

)
=

(
G j+1 − G j

)
× N j+1(G j+1 − G j
)
× N j+1

 . (5)
3
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Fig. 1. Schematic illustration of the vertex p and its neighbors for evaluating the gradient, divergence and Laplace–Beltrami operators. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the following discussion, we will use ∇h , ∇h · and ∆h to denote the discrete gradient, divergence and Laplace–

eltrami operators, respectively. To obtain second order accuracy discrete operators, let us start with a Taylor

xpansion,⎧⎨⎩
X(p) − X(G j ) =

⟨
∇hX(G j ),p − G j

⟩
+ 0.5∆hX(G j )∥p − G j∥

2,

X(p j ) − X(G j ) =
⟨
∇hX(G j ),p j − G j

⟩
+ 0.5∆hX(G j )∥p j − G j∥

2,

X(p j+1) − X(G j ) =
⟨
∇hX(G j ),p j+1 − G j

⟩
+ 0.5∆hX(G j )∥p j+1 − G j∥

2,

(6)

here ∇hX(G j ) and ∆hX(G j ) are the approximate surface gradient and surface Laplacian of X(G j ) at the centroid

j . It is obviously that ∇hX(G j ), p j − G j , and p j+1 − G j are in the same triangle plane, we can assume that

hX(G j ) takes the following form

∇hX(G j ) = α j (p j − G j ) + β j (p j+1 − G j ), (7)

here α j and β j are constants. Combining Eqs. (6) and (7), the coefficients of the discrete gradient operator can

e computed by⎛⎝ α j

β j

0.5∆hX(G j )

⎞⎠ = B−1
j

⎛⎝ X(p) − X(G j )
X(p j ) − X(G j )

X(p j+1) − X(G j )

⎞⎠ , (8)

where B j =

⎛⎜⎝
⟨
p j − G j ,p − G j

⟩ ⟨
p j+1 − G j ,p − G j

⟩
∥p − G j∥

2⟨
p j − G j ,p j − G j

⟩ ⟨
p j+1 − G j ,p j − G j

⟩
∥p j − G j∥

2⟨
p j − G j ,p j+1 − G j

⟩ ⟨
p j+1 − G j ,p j+1 − G j

⟩
∥p j+1 − G j∥

2

⎞⎟⎠ . (9)

fter calculating α j and β j and substituting the results into Eq. (7), we can compute ∇hX(G j ). Note that it is not
−1
ifficult to prove that matrix B j has full rank, which implies B j exists. In addition, we can prove that ∆hX(G j )

4
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equals zero because of

∆hX
(
G j
)

=
2⏐⏐B j
⏐⏐ ·

(( ⟨
p j − G j ,p j − G j

⟩
·
⟨
p j+1 − G j ,p j+1 − G j

⟩
−
⟨
p j+1 − G j ,p j − G j

⟩
·
⟨
p j − G j ,p j+1 − G j

⟩ )
−
( ⟨

p j − G j ,p − G j
⟩
·
⟨
p j+1 − G j ,p j+1 − G j

⟩
−
⟨
p j − G j ,p j+1 − G j

⟩
·
⟨
p j+1 − G j ,p − G j

⟩ )
+
( ⟨

p j − G j ,p − G j
⟩
·
⟨
p j+1 − G j ,p j − G j

⟩
−
⟨
p j − G j ,p j − G j

⟩
·
⟨
p j+1 − G j ,p − G j

⟩ ))
= 0.

Thus, by combining Eqs. (7)–(9), we confirm that ∇hX(G j ) has second-order accuracy in space. Based on the
reen’s formula, we can easily obtain∫

S
∆X(p)ds =

∫
∂S

⟨∇X(p),n⟩da

≈

s−1∑
j=0

(G j+1 − G j
) ∫ 1

0

⟨
q∇hX

(
G j
)
+ (1 − q)∇hX

(
G j+1

)
, qn

(
G j
)
+ (1 − q)n

(
G j+1

)⟩
dq

=

s−1∑
j=0

G j+1 − G j


6

(
2
⟨
∇hX

(
G j
)
,n
(
G j
)⟩

+ 2
⟨
∇hX

(
G j+1

)
,n
(
G j+1

)⟩
+
⟨
∇hX

(
G j
)
,n
(
G j+1

)⟩
+
⟨
∇hX

(
G j+1

)
,n
(
G j
)⟩)
, (10)

where n is the outer normal vector of the S. Thus, we can derive the approximate Laplace–Beltrami operator as

∆hX(p) =
1

A(p)

s−1∑
j=0

∥G j+1 − G j∥

6
(2
⟨
∇hX(G j ), n(G j )

⟩
+ 2

⟨
∇hX(G j+1), n(G j+1)

⟩
+
⟨
∇hX(G j ), n(G j+1)

⟩
+
⟨
∇hX(G j+1), n(G j )

⟩
),

(11)

here A(p) is the area of polygon around by G j ( j = 0, . . . , s − 1) as shown in the shadow part of Fig. 1. A(p)
an be computed as A(p) =

∑s−1
j=0

⏐⏐⏐T̂ j

⏐⏐⏐. Here
⏐⏐⏐T̂ j

⏐⏐⏐ is the area of the triangle T̂ j with p, G j and G j+1, which are

emarked by the red triangle in Fig. 1. The definition of the Laplace–Beltrami operator in Eq. (11), requires the
radient of X(G j ) at the centroid G j of each triangle, i.e. ∇hX(G j ), which has been proved to be second-order
n Eq. (7). Therefore, it is easy to prove that the discrete Laplace–Beltrami operator has second-order accuracy in
pace. Then the discrete divergence ∇h · X can be derived from Green’s formula in the same way as

∇h · X(p) =
1

A(p)

s−1∑
j=0

G j+1 − G j


6

(
2
⟨
X
(
G j
)
,n
(
G j
)⟩

+ 2
⟨
X
(
G j+1

)
,n
(
G j+1

)⟩
+
⟨
X
(
G j
)
,n
(
G j+1

)⟩
+
⟨
X
(
G j+1

)
,n
(
G j
)⟩)
,

(12)

Finally, let us consider the gradient of X at vertex p, i.e. ∇hX(p). Starting from the following Taylor expansion:

X(G j ) − X(p) =
⟨
∇hX(p),G j − p

⟩
+ 0.5∆hX(p)∥G j − p∥

2, (13)

here ∆hX(p) can be computed as Eq. (11) with second-order accuracy. Combining the first equation of system
6) with Eq. (13), we obtain⟨

∇hX(p),G j − p
⟩
=
⟨
∇hX(G j ),G j − p

⟩
− 0.5∆hX(p)∥G j − p∥

2. (14)

et us define
∇hX(p) = ∇hX(G j ) − 0.5∆hX(p)(G j − p). (15)

5
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By multiplying the weight constant ω j to Eq. (15) and adding these results, we can obtain

∇hX(p) =

s−1∑
j=0

ω j∇hX(G j ) −

s−1∑
j=0

ω j

2
∆hX(p)(G j − p), (16)

here ω j =
G j − p

−2
/
∑s−1

k=0 ∥Gk − p∥
−2. Note that Eqs. (15) and (16) have second order accuracy in spatial

pace. We will use Eq. (16) to discretize the gradient operator. Herein, the discrete gradient(∇h), divergence(∇h ·)
nd Laplacian–Beltrami (∆h) operators have been defined with second-order spatial accuracy.

.2. Second-order temporal accuracy scheme for CHNS

Let us define vn
i and φn

i be the approximation of v(pi , n∆t) and φ(pi , n∆t) at vertex pi , where ∆t = T/Nt

s the time step, T is the final time and Nt is the total number of time steps. For the given initial condition φ0
i

nd v0
i , we assume that the first time level solution satisfies φ−1

i = φ0
i and v−1

i = v0
i . For obtaining a second-order

umerical solution, we apply a Crank–Nicolson-type method under the projection framework for the CHNS scheme
s follows:

φn+1
i − φn

i

∆t
+ ∇h · (φ̃

n+
1
2

i (
1
2

v̂n+1
i +

1
2

vn
i )) =

1
Pe

∆hµ
n+

1
2

i , (17a)

µ
n+

1
2

i =
f (φn+1

i ) − f (φn
i )

φn+1
i − φn

i

− ϵ2∆h
φn+1

i + φn
i

2
, (17b)

ρ
v̂n+1

i − vn
i

∆t
+
ρ

2

(
ṽn+

1
2

i · ∇h(
1
2

v̂n+1
i +

1
2

vn
i ) + ∇h ·

(
ṽn+

1
2

i ⊗ (
1
2

v̂n+1
i +

1
2

vn
i )
))

= −∇h pn
i + ∇h ·

(
η∇h(

1
2

v̂n+1
i +

1
2

vn
i )
)

−
σ

ϵ
φ̃

n+
1
2

i ∇hµ
n+

1
2

i (17c)

ρ
vn+1

i − v̂n+1
i

∆t
+

1
2
∇h
(

pn+1
i − pn

i

)
= 0, (17d)

∇h · vn+1
i = 0, (17e)

where ˜(·)
n+

1
2

=
(
3(·)n

− (·)n−1
)
/2 and (·)n+

1
2 =

(
(·)n+1

+ (·)n
)
/2. We use v̂i to denote the intermediate velocity of

he projection method. Before we proceed, we must define inner products over the curved surfaces for deriving
he proposed numerical schemes. Here let us define φi and ψi as the functions on surfaces φi := φ(pi ) and

i := ψ(pi ), respectively. We define the discrete inner product at the vertex by (φ,ψ)h :=
∑

pi ∈P φiψi A(pi ),

nd (∇hφ,∇hψ)h =
∑

pi ∈P

(
A (pi )

∑s−1
j=0 ∇hφ

(
G j
)
· ∇hψ

(
G j
))

, thus the discrete norm can be defined as ∥φ∥
2
h =

φ, φ)h and ∥∇hφ∥
2
h = (∇hφ,∇hφ)h , respectively.

In the following section, we will show the unconditional stability of our proposed scheme Eqs. (17), which is a
iscrete representation of Eq. (3). After that, we prove the mass conservation law with the discrete schemes.

heorem 1. The solutions of Eqs. (17) make the energy decay with respect to time, i.e.(
En+1

+ ∆t2
∥∇h pn+1

∥
2
h/(8ρ)

)
−
(
En

+ ∆t2
∥∇h pn

∥
2
h/(8ρ)

)
= −∆tη∥∇h v̂n+

1
2 ∥

2
h −

ρ∆tσ
ϵPe

∥∇hµ
n+

1
2 ∥

2
h ≤ 0,

(18)

where En
= ρ∥vn

∥
2
h/2 + ρϵσ∥∇hφ

n
∥

2
h/2 + ρσ ( f (φn) , 1)h /ϵ is the total energy.

Proof. Let us denote φ
n+

1
2

t = (φn+1
− φn)/∆t . By multiplying Eq. (17a) with µn+

1
2 , we obtain(

µn+
1
2 , φ

n+
1
2

t

)
= −∥∇hµ

n+
1
2 ∥

2
h/Pe −

(
µn+

1
2 ,∇h ·

(
φ̃n+

1
2 v̂n+

1
2

))
. (19)
h h

6
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f

w

Taking the L2 inner product of Eq. (17c) with v̂n+
1
2 ∆t/ρ, we have(v̂n+1

2
h − ∥vn∥2

h

)
2∆t

= −
1
ρ

(
∇h pn, v̂n+

1
2

)
h
−
σ

ϵ

(
φ̃n+

1
2 ∇hµ

n+
1
2 , v̂n+

1
2

)
h
−
η

ρ

∇h v̂n+
1
2

2

h
. (20)

ote that(
v̂n+

1
2 , ṽn+

1
2 · ∇h v̂n+

1
2 + ∇h ·

(
ṽn+

1
2 v̂n+

1
2

))
h

=

(
v̂n+

1
2 ṽn+

1
2 ,∇h v̂n+

1
2

)
h
+

(
v̂n+

1
2 ,∇h ·

(
ṽn+

1
2 v̂n+

1
2

))
h

= 0
(21)

uring the computation of Eq. (20). Taking the L2 inner product of Eq. (17d) with vn+1∆t/ρ, we have(
vn+1, vn+1

− v̂n+1)
h =

(
−∆t/(2ρ)∇h(pn+1

− pn), vn+1)
h =

(
∆t/(2ρ)(pn+1

− pn),∇h · vn+1)
h = 0,

rom which we can derive the following equation:

1
2

(vn+1
2

h −
v̂n+1

2
h

)
= −

1
2

vn+1
− v̂n+1

2
h = −

∆t2

8ρ2

∇h
(

pn+1
− pn)2

h . (22)

Rewriting the projection step of Eq. (17d) as

vn+1
+ vn

− 2v̂n+
1
2

∆t
+

1
2ρ

∇h
(

pn+1
− pn)

= 0, (23)

hich leads to

∆t2

8

∇h
(

pn+1
− pn)2

h =
∆t2

8

(∇h pn+1
2

h −
∇h pn

2
h

)
− ρ∆t

(
∇h pn, v̂n+

1
2

)
h
, (24)

by taking the inner product with ∆t2
∇h pn/2. Finally, multiplying Eqs. (20) and (22) by 1/∆t and summing up the

results with ∆t
(
∥∇h pn+1

∥
2
h − ∥∇h pn

∥
2
h

)
/8 and

(
µn+

1
2 , φ

n+
1
2

t

)
h
, the energy dissipation with the discrete form can

be proved as follows:(
En+1

+ ∆t2
∥∇h pn+1

∥
2
h/(8ρ)

)
−
(
En

+ ∆t2
∥∇h pn

∥
2
h/(8ρ)

)
=
ρ(∥vn+1

∥
2
h − ∥vn

∥
2
h)

2
+ ∆tρσϵ

(
∇hφ

n+
1
2 ,∇hφ

n+
1
2

t

)
h

+
∆tρσ
ϵ

(
f (φn+1) − f (φn)
φn+1 − φn

, φ
n+

1
2

t

)
h
+

∆t2

8ρ

(
∥∇h pn+1

∥
2
h − ∥∇h pn

∥
2
h

)
=
ρ(∥vn+1

∥
2
h − ∥vn

∥
2
h)

2
− ∆tρσϵ(∆hφ

n+
1
2 , φ

n+
1
2

t )h

+
∆tρσ
ϵ

(
f (φn+1) − f (φn)
φn+1 − φn

, φ
n+

1
2

t

)
h
+

∆t2

8ρ

(
∥∇h pn+1

∥
2
h − ∥∇h pn

∥
2
h

)
=
ρ(∥vn+1

∥
2
h − ∥v̂n+1

∥
2
h)

2
+
ρ(∥v̂n+1

∥
2
h − ∥vn

∥
2
h)

2

+
∆tρσ
ϵ

(
µn+

1
2 , φ

n+
1
2

t

)
h
+

∆t2

8ρ

(
∥∇h pn+1

∥
2
h − ∥∇h pn

∥
2
h

)
= −∆tη∥∇h v̂n+

1
2 ∥

2
h +

ρσ∆t
ϵ

(
−

∥∇hµ
n+

1
2 ∥

Pe
−

(
µn+

1
2 ,∇h ·

(
φ̃n+

1
2 v̂n+

1
2

)))
−

∆tσρ
ϵ

(
φ̃n+

1
2 ∇hµ

n+
1
2 , v̂n+

1
2

)
= −∆tη∥∇h v̂n+

1
2 ∥

2
h −

∆tρσ
ϵPe

∥∇hµ
n+

1
2 ∥

2
h ≤ 0,

which corresponds to Eq. (18). □
7
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L
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It is worth pointing that the modified energy En
+ ∆t2

∥∇h pn
∥

2/(8ρ) is non-increasing in time. Although we

cannot prove that the original energy is unconditionally decreasing, we can see that the original energy is less than

the modified energy, i.e., En
≤ En

+ ∆t2
∥∇h p1

∥
2/(8ρ). Therefore, the discrete original energy is bounded and

maybe be decreasing in time. Later, we consider the mass conservation of our proposed discrete scheme.

Theorem 2. The proposed numerical scheme Eq. (17) satisfies the total mass conservation property, i.e.∑
pi ∈P

φn+1
i A (pi ) =

∑
pi ∈P

φn
i A (pi ) . (25)

Proof. Multiplying
∑

pi ∈P φ
n+1
i and

∑
pi ∈P φ

n
i with A(p) and summing by parts, we can obtain

∑
pi ∈P

φn+1
i A(pi ) −

∑
pi ∈P

φn
i A(pi )

= ∆t
∑
pi ∈P

(
∆hµ

n+
1
2

i

Pe
+ ∇h · (φ̃

n+
1
2

i v̂n+
1
2

i ))A(pi )

= ∆t
∑
pi ∈P

⎛⎝ s−1∑
j=0

∥G j+1 − G j∥

6

(
2

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j ), n(G j )

⟩

+ 2

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j+1), n(G j+1)

⟩
+

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j ), n(G j+1)

⟩

+

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j+1), n(G j )

⟩ ))
. (26)

et us denote the edge of G j G j+1 ∈ P̃ as G j G j+1 as the green triangles in Fig. 1. Thus, Eq. (26) can be recalculated
ith respect to the edges over the dual mesh P̃ as∑

pi ∈P

φn+1
i A(pi ) −

∑
pi ∈P

φn
i A(pi )

= ∆t
∑

G j G j+1∈P̃

(
∥G j+1 − G j∥

6

(
2

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j ), np(G j )

⟩

+ 2

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j+1), np(G j+1)

⟩
+

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j ), np(G j+1)

⟩

+

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j+1), np(G j )

⟩
+ 2

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j ), np j+1 (G j )

⟩

+ 2

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j+1), np j+1 (G j+1)

⟩

+

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j ), np j+1 (G j+1)

⟩

+

⟨
(
∇hµ

n+
1
2

Pe
+ φ̃n+

1
2 v̂n+

1
2 )(G j+1), np j+1 (G j )

⟩ ))
. (27)
8
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Since the vertices are labeled counterclockwise, the normal vectors np j+1 (G j ) and np j+1 (G j+1) can be recalculated
s ⎧⎪⎪⎨⎪⎪⎩

np j+1 (G j ) =
(G j − G j+1) × N j

∥(G j − G j+1) × N j∥
= −np(G j ),

np j+1 (G j+1) =
(G j − G j+1) × N j+1

∥(G j − G j+1) × N j+1∥
= −np(G j+1).

(28)

y combining Eqs. (26)–(28), we complete the proof. □

heorem 3. Let Σ := (P, T ) be the triangular mesh without boundary and denote φ and ψ to be the vector field
n Σ . We have

(∆hφ,ψ)h = − (∇hφ,∇hψ)h . (29)

roof. Let us first prove that (1,∇h · (φ∇hψ))h = 0. According to the discrete divergence operator defined in
q. (12), we have

(1,∇h · (φ∇hψ))h

=
1

A(p)

∑
pi ∈P

((
s−1∑
j=0

∥G j+1 − G j∥

6
(2
⟨
(φ∇hψ)(G j ),n(G j )

⟩
+ 2

⟨
(φ∇hψ)(G j+1),n(G j+1)

⟩
+
⟨
(φ∇hψ)(G j ),n(G j+1)

⟩
+
⟨
(φ∇hψ)(G j+1),n(G j )

⟩
)))

=

∑
G j G j+1∈P̃

G j − G j+1


6
((2
⟨
∇h · (φ∇hψ)(G j ),n(G j )

⟩
+ 2

⟨
∇h · (φ∇hψ)(G j+1),n(G j+1)

⟩
+
⟨
∇h · (φ∇hψ)(G j ),n(G j+1)

⟩
+
⟨
∇h · (φ∇hψ)(G j+1),n(G j )

⟩
)

+ (2
⟨
∇h · (φ∇hψ)(G j ),n(G j )

⟩
+ 2

⟨
∇h · (φ∇hψ)

(
G j+1

)
,n
(
G j+1

)⟩
+
⟨
∇h · (φ∇hψ) (Gi ) ,n

(
G j+1

)⟩
+
⟨
∇h · (φ∇hψ)(G j+1),n(G j )

⟩
))

=

∑
G j G j+1∈P̃

G j − G j+1


6
(2
⟨
∇h · (φ∇hψ)(G j ),np j+1 (G j ) + np(G j )

⟩
+ 2

⟨
∇h · (φ∇hψ)(G j+1),np j+1

(
G j+1

)
+ np(G j+1)

⟩
+

⟨
∇h · (φ∇hψ)

(
G j
)
,np j+1

(
G j+1

)
+ np(G j+1)

⟩
+

⟨
∇h · (φ∇hψ)(G j+1),np j+1 (G j ) + np(G j )

⟩
) = 0. (30)

ere we have used the definition of the dual mesh and Eq. (28). Then let us prove Theorem 3:

(φ,∆hψ)h = (φ,∆hψ)h − (1,∇h · (φ∇hψ))h

=

∑
pi ∈P

A(pi )φi
1

A(pi )

s−1∑
j=0

∥G j+1 − G j∥

6
(2
⟨
∇hψ(G j ), n(G j )

⟩
+ 2

⟨
∇hψ(G j+1), n(G j+1)

⟩
+
⟨
∇hψ(G j ), n(G j+1)

⟩
+
⟨
∇hψ(G j+1), n(G j )

⟩
)

−

∑
pi ∈P

1
A(pi )

( s−1∑
j=0

∥G j+1 − G j∥

6
(2
⟨
φ∇hψ(G j ), n(G j )

⟩
+ 2

⟨
φ∇hψ(G j+1), n(G j+1)

⟩
+
⟨
φ∇hψ(G j ), n(G j+1)

⟩
+
⟨
φ(G j )∇hψ(G j+1), n(G j )

⟩
)
)

A(pi )

=

∑ s−1∑(⟨
∇hψ(G j ),

∥G j+1 − G j∥

3
(φ(pi ) − φ(G j )) · n(G j )

⟩

pi ∈P j=0

9
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+

⟨
∇hψ(G j+1),

∥G j+1 − G j∥

3
(φ(pi ) − φ(G j+1)) · n(G j+1)

⟩
+

⟨
∇hψ(G j ),

∥G j+1 − G j∥

6
(φ(pi ) − φ(G j )) · n(G j+1)

⟩
+

⟨
∇hψ(G j+1),

∥G j+1 − G j∥

6
(φ(pi ) − φ(G j+1)) · n(G j )

⟩ )
=

∑
pi ∈P

s−1∑
j=0

⟨
∇hψ(G j ),

∥G j+1 − G j∥

6
(φ(pi ) − φ(G j )) ·

(
2n(G j ) + n(G j+1)

)⟩

+

∑
pi ∈P

s∑
j=1

⟨
∇hψ(G j ),

∥G j − G j−1∥

6
(φ(pi ) − φ(G j )) ·

(
2n(G j ) + n(G j−1)

)⟩

=

∑
pi ∈P

s−1∑
j=0

⟨
∇hψ(G j ), (φ(pi ) − φ(G j )) ·

(
∥G j+1 − G j∥

6

(
2n(G j ) + n(G j+1)

)
+

∥G j − G j−1∥

6

(
2n(G j ) + n(G j−1)

))⟩
=

∑
pi ∈P

s−1∑
j=0

⟨
∇hψ(G j ), (φ(pi ) − φ(G j ))

·

(
∥G j+1 − G j∥

6

(
2

(
G j+1 − G j

)
× (p j − G j ) × (p j+1 − G j )(G j+1 − G j
)
× (p j − G j ) × (p j+1 − G j )


+

(
G j+1 − G j

)
× (p j+2 − G j+1) × (p j+1 − G j+1)(G j+1 − Gi
)
× (p j+2 − G j+1) × (p j+1 − G j+1)

)
+

∥G j − G j−1∥

6

(
2

(
G j+1 − G j

)
× (p j − G j ) × (p j+1 − G j )(G j+1 − G j
)
× (p j − G j ) × (p j+1 − G j )


+

(
G j − G j−1

)
× (p j−1 − G j−1) × (p j − G j−1)(G j − G j−1
)
× (p j−1 − G j−1) × (p j − G j−1)

)
)⟩

=

∑
pi ∈P

s−1∑
j=0

⟨
∇hψ(G j ),

A(pi )
|Bi |

(( ⟨
p j+1 − G j ,p j+1 − G j

⟩
∥p − G j∥

2

−
⟨
p j+1 − G j ,p j+1 − G j

⟩
∥p j − G j∥

2
)

(φ(pi ) − φ(G j )) +

( ⟨
p j − G j ,p j+1 − G j

⟩
∥p j − G j∥

2

−
⟨
p j − G j ,p j − G j

⟩
∥p j+1 − G j∥

2
)

(φ(p j ) − φ(G j ))

+

( ⟨
p j − G j ,p j − G j

⟩ ⟨
p j+1 − G j ,p j+1 − G j

⟩
−
⟨
p j − G j ,p j+1 − G j

⟩ ⟨
p j+1 − G j ,p j − G j

⟩ )
(φ(p j+1) − φ(G j ))

)
+

A(pi )
|Bi |

(( ⟨
p j+1 − G j ,p j+1 − G j

⟩
∥p − Gi∥

2

−
⟨
p j+1 − G j ,pi − G j

⟩
∥p j+1 − G j∥

2
)

(φ(pi ) − φ(G j ))

+

(⟨
p j − G j ,p − G j

⟩
∥p j+1 − G j∥

2
−
⟨
p j − G j ,p j+1 − G j

⟩
∥φ(p j ) − φ(G j )∥2

)
(φ(p j ) − φ(G j ))

+

( ⟨
p j − G j ,p j − G j

⟩ ⟨
p j+1 − G j ,p j+1 − G j

⟩

10
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−
⟨
p j − G j ,p j+1 − G j

⟩ ⟨
p j+1 − G j ,p j − G j

⟩ )
(φ(p j+1) − φ(G j ))

)⟩
= −

∑
pi ∈P

s−1∑
j=0

⟨
∇hψ(G j ), A(pi )

(
α j (p j − G j ) + β j (p j+1 − G j )

)⟩

= −

∑
pi ∈P

⎛⎝A (pi )

s−1∑
j=0

∇hφ
(
G j
)
· ∇hψ

(
G j
)⎞⎠ = − (∇hφ,∇hψ)h (31)

hich corresponds to Eq. (29). Here we have used the definition of the outer normal vector np(G j ) in Eq. (5) and
he discrete gradient of the vector field ∇hX(G j ) in Eq. (7). □

Several summarizations of our proposed method are remarked here: (i) The discrete CHNS scheme (17) is
three-level scheme and we need to set initial step φ−1 at every time step for the second-order accuracy. In

his work, φ−1
:= φ0 is used. Although the setting of this initial condition reduces the accuracy of the first

ime step, it does not affect the overall accuracy to be second-order. Thus, second-order accuracy with respect
o time and space can be obtained during the whole simulation. (ii) Although the discrete method is of three-time-
evels, the results of first time level φn−1 do not appear in the energy dissipation result. That is because the term
∆tσρ
ϵ

(φ̃n+
1
2 ∇hµ

n+
1
2 , v̂n+

1
2 ) in Eq. (18) has been canceled out during the computation. Similarly, the results of first

time level φn−1 do not appear in the mass conservation theorem because the terms of (∇hµ
n+

1
2 /Pe+φ̃n+

1
2 v̂n+

1
2 )(G j )

and (∇hµ
n+

1
2 /Pe + φ̃n+

1
2 v̂n+

1
2 )(G j+1) have been canceled out during the computation. (iii) The discrete energy

issipation and mass conservation can be obtained for various complex curved surfaces. (iv) Our proposed method
an be directly applied to multiphase flow model.

. Solutions for CHNS systems

In this section, we present the numerical solutions of our proposed incompressible CHNS system. Since the phase
otion is strongly coupled with the velocity field evolution, it is significant to solve the NS and CH equations in
temporally matched manner.

.1. Cahn–Hilliard solver

Given the initial vn−1
i , vn

i , φn−1
i and φn

i , we want to find φn+1
i and µ

n+
1
2

i by the following equations⎧⎪⎪⎨⎪⎪⎩
φn+1

i − φn
i

∆t
+ ∇h ·

(
φ̃

n+
1
2

i v̂
n+

1
2

i

)
= ϵ∆hµ

n+
1
2

i ,

µ
n+

1
2

i = g(φn+1
i ) − ϵ2 ∆hφ

n+1
i + ∆hφ

n
i

2
,

(32)

here g(φn+1
i ) := ( f (φn+1

i ) − f (φn
i ))/(φn+1

i − φn
i ) is defined as the chemical potential term. Since g(φn+1

i ) in
q. (32) is nonlinear with respect to φn+1

i , we linearize g(φn+1,m
i ) at φn+1,m

i , i.e.,

g(φn+1,m
i ) = 0.25

(
(φn+1,m

i )3
+ (φn

i − 2)(φn+1,m
i )2

+ (φn
i − 1)2φ

n+1,m
i + φn

i (φn
i − 1)2

)
= 0.25

(
(φn+1,m−1

i )3
+ (φn

i − 2)(φn+1,m−1
i )2

+ (φn
i − 1)2φ

n+1,m−1
i + φn

i (φn
i − 1)2

+ (3(φn+1,m−1
i )2

+ 2(φn
i − 2)φn+1,m−1

i + (φn
i − 1)2)(φn+1,m

i − φ
n+1,m−1
i )

)
.

(33)

Jacobi-type iteration is applied to solve Eq. (32):⎧⎪⎪⎨⎪⎪⎩
φ

n+1,m
i − φn

i

∆t
+ ∇h ·

(
φ̃

n+
1
2

i v̂
n+

1
2

i

)
= ϵ∆hµ

n+
1
2 ,m

i ,

µ
n+

1
2 ,m

= g(φn+1,m) − ϵ2 ∆hφ
n+1,m
i + ∆hφ

n
i ,

(34)
i i 2
11
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Here we denote m as the index of Jacobi iteration and the initial condition φn+1,0
i is defined as φn+1,0

i = 2φn
i −φn−1

i .

Herein, Eq. (34) becomes a linear system with respect to φn+1,m
i and µ

n+
1
2 ,m

i and can be solved with a biconjugate
gradient stabilized method. We execute the procedure (Eq. (34)) until the error is smaller than a given tolerance tol
as:

∥φ
n+1,m
i − φ

n+1,m−1
i ∥h ≤ tol.

Then we will set φn+1
i = φ

n+1,m
i . The residual error converges rather quickly to a tolerance tol = 1e − 6 in few

iterations.

4.2. Navier–Stokes solver

For the given vn
i and pn

i , we compute vn+1
i and pn+1

i with the known φ̃
n+

1
2

i and µ
n+

1
2

i by the following steps:

Step 1.
(
I −

∆tη
2ρ

∆h

)
v̂n+1

i = −∆t
(

ṽ
n+

1
2

i · ∇h
˜̂v

n+
1
2

i + ∇h · (ṽ
n+

1
2

i ⊗ ˜̂v
n+

1
2

i )
)

+
∆t
ρ

⎛⎝−∇h pn
i +

η

2
∆hvn

i −
σ φ̃

n+
1
2

i

2ϵ
∇hµ

n+
1
2

i

⎞⎠+ vn
i ,

Step 2. ∆h pn+1
i = ∆h pn

i +
2ρ
∆t

∇h · v̂n+1
i ,

Stpe 3. vn+1
i =

∆t
2ρ

∇h
(

pn
i − pn+1

i

)
+ v̂n+1

i .

here I denotes the identity matrix. In Step 1, we apply a biconjugate gradient stabilized method to update v̂n+1
i .

e use the Adams–Bashforth extrapolation to deal with the convection term explicitly. Step 2 is obtained by taking
he discrete divergence operation to Eq. (17d) and using Eq. (17e). For the update of pressure, we demonstrate a
acobi-type iteration to compute the linear equation, which has been widely used in previous studies and proved to
e simple and efficient [44,45]. Since the matrix of the discrete Laplace–Beltrami operator is not strictly diagonally
ominant, which may lead to results without convergence. Thus, we apply a Picard iteration as

∆h pn+1,m
i + Dpn+1,m

i = ∆h pn
i + Dpn+1,m−1

i +
2ρ
∆t

∇h · v̂n+1
i , (35)

here D is a modified matrix, such that (∆h + D) is a diagonally dominant matrix. Here we use D = 0.01I. Step 3
is applied until the convergence condition is satisfied with a given tolerance as

∥pn+1,m
i − pn+1,m−1

i ∥h ≤ tol, (36)

where pn+1,m
i and pn+1,m−1

i are the solutions of the mth and (m − 1)th iterations. Here we choose pn+1,0
i = pn and

let pn+1
i = pn+1,m . Finally, vn+1

i can be obtained with the calculated pn+1
i and v̂n+1

i in Step 3.

5. Numerical experiments

5.1. Non-increasing discrete energy and mass conservation

To demonstrate the unconditional energy dissipation and mass conservation, we consider the phase variable φ
on a unit sphere surface. Let us denote v := (u, v, w). The initial condition is chosen as follows:{

φ(x, y, z, 0) = rand(x, y, z), p(x, y, z, 0) = 1,
u(x, y, z, 0) = 1, v(x, y, z, 0) = 1, w(x, y, z, 0) = 1,

where rand(x, y, z) is a random number between 0 and 1. The mass of phase variables can be defined as M :=∑NP
i=1 φi A(pi ), where A(pi ) is defined as the area of polygon around the i th vertex. Here, we consider the parameters

as: h = 0.08, ∆t = 2.5h, ρ = 1, η = 1, ϵ = 0.04, Pe = 1/ϵ and σ = ϵ. The results shown in Fig. 2 suggest
that the phases are gathered together and the interface between phases has evolved due to the hydrodynamic phase
field model. It should be noted that the difference between the discrete original energy and discrete modified energy
12
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Fig. 2. Temporal evolution of the non-increasing discrete modified energy, original energy and mass conservation of the proposed method.
he inset figures are the morphology of the phase field at the indicated times. Note that the modified energy and original energy have been
ormalized by the initial energy. The discrete original energy and discrete modified energy dissipate, which verifies that the proposed scheme
s stable.

issipates, i.e., ∆t2
∥∇h pn

∥
2/(8ρ), which is second order respect to ∆t , is much small. Furthermore, we can observe

that the mass is conserved and the discrete original energy and discrete modified energy dissipate, which verifies
that the proposed scheme is stable.

5.2. Stability of the proposed scheme

Since the NS equation contains the strong nonlinear term, i.e. the convention term, and the CH equation contains
the fourth-order spatial derivatives, i.e. the chemical potential term, the explicit time scheme leads to severe time-step
restrictions for stability. To demonstrate the stability of our proposed scheme, we perform the numerical experiment
with ∆t = 10, 1, 0.1 and 0.01, respectively. The initial conditions are{

φ(x, y, z, 0) = 0.5 + 0.5 sin(2πx) sin(2πy) sin(2π z),
u(x, y, z, 0) = 0, v(x, y, z, 0) = 0, w(x, y, z, 0) = 0, p(x, y, z, 0) = 0.

The parameters are set the same as in Section 5.1. As shown in Fig. 3, we compare the temporal evolution of
the total energy for four different time steps ∆t = 10, 1, 0.1 and 0.01 until t = 1000. The inset figures are the
morphology of the phase field at the indicated times with ∆t = 10. As can be seen, no blow-up of the numerical
solutions is present and the discrete modified energies with different time steps are non-increasing, which implies
that large time steps can be used in our scheme. We find that the results with ∆t = 0.1 are in good agreement
with the results for the smaller time step ∆t = 0.01. However, these differ from the results for the larger time step
∆t = 1. We can observe that the results with a large time step are less accurate than those obtained by using a
small time step because using a larger time step would cause large error of the numerical solutions. Therefore, a
small time step will be used for highly accurate numerical solutions. Therefore, to maintain our proposed scheme’s
accuracy and reduce computational costs, an appropriate value for ∆t is ∆t = 0.1.

5.3. Convergence test

In this section, we perform two numerical experiments to demonstrate the convergence of the proposed second-
order spatial and temporal numerical scheme. In order to avoid the influence of the geometry and structure of the
mesh grid, we use a unit sphere to generate a set of high-quality mesh grids, which has almost the same edge
in all triangles. In order to obtain the convergence rate for temporal discretization with the same spatial step size
h = 0.025, we choose a set of different time steps such as ∆t = 8e–4, 4e–4, 2e–4 and 1e–4. The results are run up

to time t = 0.1 with the same initial condition φ(x, y, z, 0) = 0.5+0.5 sin(2πx) sin(2πy) sin(2π z). The parameters

13
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Fig. 3. Temporal evolution of the free energy functional of the proposed model for four time step sizes of ∆t = 10, 1, 0.1 and 0.01. Note
that the modified energy and original energy have been normalized by the initial energy. The inset figures are the morphology of the phase
field at the indicated time with ∆t = 10.

Table 1
Error and convergence rate of the proposed schemes with various time steps. The space step size
is fixed as h = 0.05. The numerical reference solution is obtained with ∆t = 2e−5 at time
t = 0.1.

∆t 8e−4 4e−4 2e−4 1e−4

l2 error 3.724e−7 9.081e−8 2.223e−8 5.519e−9
Rate 2.04 2.03 2.01

Table 2
Error and convergence rate of the proposed schemes with various mesh grids. The temporal step
size is fixed as ∆t = 5e−4. The numerical reference solution is obtained with h = 0.005 at time
t = 0.1.

h 0.2 0.1 0.05 0.025

l2 error 3.690e−2 1.014e−2 1.715e−3 3.411e−4
Rate 1.86 2.56 2.33

are set as ϵ = 0.1, σ = ϵ/10, ρ = 1, η = 1. Due to the lack of closed-form analytical solution, we assume
hat the numerical solution is generated by a very fine time step ∆t = 2e–5 as a reference solution φref. Here,
he error is defined as the difference between that grid and the reference solution cell, i.e., ei,∆t := φi,∆t − φref

i .
he rate of convergence is defined as the ratio of successive errors: log2(∥ei,∆t∥2/∥ei,∆t/2∥2). We present the errors
nd the rates of convergence in Table 1. As expected from the discrete scheme Eqs. (17), our method is indeed
econd-order accuracy with respect to time. To demonstrate the second order spatial accuracy of our method, we
rst define ehi as the discrete l2-norm of the difference between the targeting grid and the average of the reference
olution cells neighboring it. Here, the error is denoted as ei,h := φi,d −

(
ζiφ

ref
p + ηiφ

ref
q + θiφ

ref
r

)
, where p, q

nd r are the fine reference grid indexes in the triangle and the weighting coefficients ζ , η, θ are determined by
i,d := ζi vref

p + ηi vref
q + θi vref

r . We use log2

(ei,h


2 /
ei,h/2


2

)
to denote the rate of convergence. The results are

hown in Table 2. The fixed time step ∆t = 5e−4 is used here. The results are compared at the same time t = 0.1.
or the justification of this computation, we perform a very fine space grid h = 0.005. As shown in Table 2, we
an see that our method is indeed second-order accuracy with respect to space.

.4. Spinodal decomposition on an adaptive surface mesh

In this section, we use two representative meshes to show the robustness and practicability of our algorithm. The

wo grids are screw surface with heterogeneous mesh and bumpy sphere surface with poor-quality mesh, respectively.

14
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Fig. 4. Spinodal decomposition over a screw surface with nonuniform mesh and a bumpy sphere with poor-quality mesh. From left to right,
he sub-figures show the surface mesh structure, the initial plots of φ and the final plots of φ, respectively.

Table 3
Value of the average divergence for the two representative meshes at various moments.

Time 0.001 0.002 0.004 0.008 0.012 0.016 0.02

Screw surface 3.61e−4 1.10e−4 2.02e−4 2.71e−4 −4.80e−5 −3.43e−4 −3.91e−4
Bumpy sphere 4.32e−4 3.11e−4 2.40e−4 1.73e−5 −3.22e−4 −2.11e−4 7.93e−5

Generally, the results are affected by the quality of the grids. The existing algorithms are simulated by using uniform
grids, which is not universal. The discrete divergence operator and gradient operator over triangular surfaces may
not be convergent while the adaptive mesh is used. Meanwhile, the divergence-free condition and mass conservation
condition cannot be guaranteed [46]. Additionally, the discrete Laplace–Beltrami operator, which is defined by the
other two operators, may lead to unstable results during the computation of CHNS system. In order to show that
our proposed method is not affected by the quality of mesh, we solve the hydrodynamic phase field model over the
two meshes as shown in Fig. 4. Here, the initial condition is φ(x, y, z, 0) = rand(x, y, z), where rand is a random
number between 0 and 1. The parameters are chosen as follows: h = 0.001, ∆t = 0.1h, ϵ = 0.1, Pe = 1/ϵ,

= 0.05, ρ = 1 and η = 1. As shown in the top line of Fig. 4(a), the mesh size gets smaller as it gets closer
o the center of the screw surface. The bottom figure shows the poor-quality mesh on the bumpy sphere. Fig. 4(b)
hows the initial phase morphology and Fig. 4(c) is the phase morphology at t = 0.02. These results confirm that
ur method can perform well on the mesh with poor-quality and heterogeneous grid. Furthermore, we calculate
he average divergence of the total points over the two surfaces and list the values of the average divergence at
arious specific moments as shown in Table 3. It is obvious that the average divergence of the velocity field is
pproximately zero, which corresponds to the physics context.
15
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Fig. 5. Snapshots of the relaxation of a square shape by the CHNS system. From left to right, t = 0, 3.5, 7, 10, respectively.

Fig. 6. The evolution of merging and the relaxation of two kissing circle by the proposed CHNS system. From left to right, t = 0, 5, 20
and 200, respectively.

5.5. Shape relaxation on surfaces

In this section, we use the proposed CHNS scheme to simulate the shape relaxation with the binary phases flow
as shown in Figs. 5 and 6. For the first numerical experiment, we use a square as the initial shape over a unit sphere
surface. The initial conditions are defined as⎧⎨⎩φ(x, y, z, 0) = 0.5 + 0.5 tanh

(
|x − 1| + |y| + |z| − 1

√
5ϵ

)
,

u(x, y, z, 0) = v(x, y, z, 0) = w(x, y, z, 0) = 0, p(x, y, z, 0) = 0.

The parameters used here are chosen as follows: h = 0.04, ∆t = 0.1, ϵ = 0.03, Pe = 1/ϵ, σ = 0.001, ρ and
η are constant. Since the velocity is zero at t = 0, there is only the surface energy in the whole system. As we
expected, the isolated irregular interface relaxes to a circle due to the isotropy of the mobility and the effect of
surface tension.

For the second numerical test, we apply the merging process of two circular bubbles on a unit sphere. Under
the influence of surface tension, the two circular bubbles which are tangent to each other, are merged under the
influence of surface tension. They eventually relax to a large circle at which the total energy is small. The initial
conditions are⎧⎪⎨⎪⎩φ(x, y, z, t) = 0.5 + 0.5 tanh

(√
(x − 0.55)2 + (|y| − 0.25)2 + z2 − 0.5

√
2ϵ

)
,

u(x, y, z, 0) = v(x, y, z, 0) = w(x, y, z, 0) = 0, p(x, y, z, 0) = 0,

The parameters used here are h = 0.04, ∆t = 0.1h, ϵ = 0.03, Pe = 1/ϵ and σ = 0.001. In Fig. 6, we show
the morphology of the phase field at t = 0, 5, 20 and 200, respectively. It is worth pointing out that the mass is
conserved during the evolution of shape relaxation.
16



Q. Xia, Q. Yu and Y. Li Computer Methods in Applied Mechanics and Engineering 384 (2021) 113987

5

w
i
T
i
d
a
a

5

T

Fig. 7. Schematic illustration of the initial condition. (a) is the initial phase field and (b) is the initial velocity field.

Fig. 8. From left to right are the morphology of the phase field under shear flow at t = 5, 10, 15 and 20, respectively.

.6. Deformation of a drop under shear flow

Next, we simulate the deformation of a drop under the influence of shear flow. The initial φ and v are chosen
as ⎧⎪⎨⎪⎩φ(x, y, z, t) = 0.5 + 0.5 tanh

(√
(x − 1)2 + y2 + z2 − 0.5

√
2ϵ

)
,

u(x, y, z, 0) = 3yz, v(x, y, z, 0) = −3xz, w(x, y, z, 0) = 0, p(x, y, z, 0) = 0,

(37)

hich has been shown in Fig. 7. The droplet of radius 0.5 is positioned at (1, 0, 0) on the sphere surface. Fig. 7(b)
s the initial velocity field, the top moves to the left while the bottom moves to the right over the unit sphere surface.
he parameters are chosen as: σ = 0.0001 and ϵ = 0.03. Here the density and viscosity are both constant. We

mplement this simulation with the average mesh size of h = 0.04 and the time step of ∆t = 0.1h. We show the
rop shape under shear flow obtained by our proposed method in Fig. 8. From Fig. 8(a) to (d), the indicated times
re t = 5, 10, 15 and 20, respectively. Due to the small surface tension and high velocity at the tip of drop, fracture
ppears in Fig. 8(d), which corresponds with the physical context.

.7. Simulation of Kelvin–Helmholtz instability on a sphere surface

The interface between the two fluid flows, which has a sufficiently large velocity difference, will be unstable.
his interface instability is known as Kelvin–Helmholtz (KH) instability and can be observed in various natural
17
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Fig. 9. The simulation of Kelvin–Helmholtz instability on a unit sphere surface. From left to right, t = 0, 12, 24 and 60, respectively.

situations [47]. In this section, we perform a simulation of KH instability by our proposed CHNS system over the
unit sphere surface. The initial conditions are considered as⎧⎪⎪⎨⎪⎪⎩

φ(x, y, z, 0) = 0.5 + 0.5 tanh

⎛⎝−cos−1
(

z/
√

x2 + y2 + z2
)

+ 0.5π + 0.06cos
(
6 tan−1(y/x)

)
√

2ϵ

⎞⎠ ,
u(x, y, z, 0) = 10(φ − 0.5)y, v(x, y, z, 0) = −10(φ − 0.5)x, w(x, y, z, 0) = 0, p(x, y, z, 0) = 0.

or this simulation, we choose the parameters as: h = 0.025, ∆t = 0.01, ϵ = 0.01 and Pe = 10/ϵ. As shown in
ig. 9, we perform a long time simulation of the KH instability, which eventually develops to a disordered structure.
his numerical experiment indicates that our method can be used efficiently for the computation of KH instability
n complex surfaces.

.8. Simulation of buoyancy-driven flow on a helical collar surface

In this section, we perform a simulation of rising process under the buoyancy-driven flow over a helical collar
urface. The two phases are assumed to have different densities. Let us add a buoyancy term to the NS equation as
ollows

ρ(φ)
(
∂v(x, t)
∂t

+
v(x, t) · ∇Sv(x, t) + ∇S · (v(x, t) ⊗ v(x, t))

2

)
= −∇S p(x, t) +

1
Re

∇S · (η∇Sv(x, t)) −
ϵ−1

W e
φ(x, t)∇Sµ(x, t) +

ρ(φ) − ρ1

Fr2 g,

here ρ = ρ1φ + ρ2(1 − φ), ρ1 and ρ2 are the densities of two phases and ρ1 ≤ ρ2. We use g := (0, 0, − 1) to
enote the gravity field and Fr is the Froude number. Since the two fluids have different densities, we modified
he system Eqs. (17) as:

φn+1
i − φn

i

∆t
=

1
Pe

∆hµ
n+

1
2

i − ∇h · (φ̃
n+

1
2

i v̂
n+

1
2

i ), (38a)

µ
n+

1
2

i =
f (φn+1

i ) − f (φn
i )

φn+1
i − φn

i

− ϵ2∆h
φn+1

i + φn
i

2
, (38b)

ρ(φ
n+

1
2

i )
v̂n+1

i − vn
i

∆t
+
ρ(φ

n+
1
2

i )
2

(
ṽn+

1
2

i · ∇h v̂n+
1
2

i + ∇h ·

(
ṽn+

1
2

i ⊗ v̂n+
1
2

i

))

= −∇h pn
i + ∇h ·

(
η∇h v̂

n+
1
2

i

)
−
σρ(φ

n+
1
2

i )
ϵ

φ̃
n+

1
2

i ∇hµ
n+

1
2

i +
ρ(φ

n+
1
2

i ) − ρ1

Fr2 g, (38c)

ρ(φ
n+

1
2 )

vn+1
i − v̂n+1

i
+

1
∇h
(

pn+1
− pn)

= 0, (38d)
i ∆t 2 i i
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Fig. 10. Simulation of buoyancy-driven flow over a helical collar surface. From the left to right, t = 0, 6 and 12, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

∇h · vn+1
i = 0, (38e)

ρ(φ
n+

1
2

i ) = ρ1φ
n+

1
2

i + ρ2

(
1 − φ

n+
1
2

i

)
. (38f)

We have to point that the resulting method is still second-order accurate with respect to time and space, since we
use the second-order Crank–Nicolson-type scheme. However, since ρ(φ) is the function of φ, we cannot prove the
energy stability of Eq. (38c) in theory. The initial conditions are defined as⎧⎨⎩φ(x, y, z, 0) = 0.5 + 0.5 tanh

(
z + 0.06rand(x, y, z)

√
2ϵ

)
,

u(x, y, z, 0) = v(x, y, z, 0) = w(x, y, z, 0) = 0, p(x, y, z, 0) = 0,

where rand(x, y, z) is a random number between 0 and 1. Here the following parameters are used: h = 0.0085,
dt = h, ϵ = 0.0085, Pe = 1/ϵ, Fr = 0.5. The surface tension is omitted. It is worth pointing out that the
density difference of the binary flows used here is small so that a Boussinesq approximation is applicable for the
approximation [48,49]. As can be seen from Fig. 10, under the influence of buoyancy, the positions of binary fluid
flows have changed along the helical collar surface. As we expected, the phase of small density, shown as blue
part, moves upward while the one of big density moves reversely. This simulation indicates that our method can be
effectively used for the computation with buoyancy-driven flow.

6. Conclusion

In this paper, we have proposed a second-order temporal and spatial accuracy, unconditionally energy stable
numerical scheme, which is derived by coupling NS equation with the CH equation, to simulate the hydro-dynamic
phase separation on arbitrarily curved surfaces. A novel surface discrete finite volume method was constructed
for the high accuracy surface computation. Firstly, we constructed the discrete operators, i.e. discrete divergence,
gradient, and Laplace–Beltrami operators, via a surface mesh consisting of triangular grids. Then the Crank–
Nicolson method was applied in our scheme, which is embedded under the projection framework. We employed a
Picard iteration to obtain a unique solution of pressure in NS equation. The resulting system of discrete equations
was solved by the Jacobi-type iteration method and biconjugate gradient stabilized method. The proposed CHNS
scheme was proved to be unconditionally energy stable. The mass conservation property was satisfied. To our
knowledge, this was the first attempt to apply a second-order provably unconditionally stable scheme for the
hydrodynamics coupled phase field model on the arbitrarily curved surfaces. We presented various results, such as
the simulations with nonuniform and poor-quality meshes, shape relaxation on surfaces, phase deformation under
shear flow, Kelvin–Helmholtz instability and simulation of buoyancy-driven flow, to demonstrate the robustness and
efficiency of the proposed method.
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