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a b s t r a c t

This paper proposes a first- and second-order unconditionally stable direct discretization
method based on a surface mesh consisting of piecewise triangles and its dual-surface
polygonal tessellation for solving the N-component Cahn–Hilliard system. We define the
discretizations of the gradient, divergence, and Laplace–Beltrami operators on triangle
surfaces. We prove that the proposed schemes, which combine a linearly stabilized
splitting scheme, are unconditionally energy-stable. We also prove that our method
satisfies the mass conservation. The proposed scheme is solved by the biconjugate
gradient stabilized (BiCGSTAB) method, which can be straightforwardly applied to GPU-
accelerated biconjugate gradient stabilized implementation by using the Matlab Parallel
Computing Toolbox. Several numerical experiments are performed and confirm the
accuracy, stability, and efficiency of our proposed algorithm.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Many physical and chemical phenomena concerning phase separation patterns occurring on static surfaces can be
bserved [1–10]. For example, microphase separation occurs during the operation of high-energy fuel cells and the
lectrodeposition of wastewater metal recovery [1–3]. Under the action of an external electric field, the metal ions in
he plating solution undergo liquid phase mass transfer, electrochemical reaction, and electrocrystallization processes
o deposit metal atoms on the surface of the cathode. The morphogenesis of organisms, especially the generation of skin
atterns such as zebra patterns [4,5] and wing patterns [6], is a classical problem. The block copolymer melts can undergo
hase ordering or separation when the temperature drops to a critical point [7–10]. The Cahn–Hilliard(CH) equation [11]
lays increasingly important roles in various fields about the numerical simulation of multi-component models, such as
omputer vision [12,13], volume reconstruction [14,15], computational fluid dynamics and materials science [16–22]. A
ommon feature of these models is that the individual physical phases, chemical components, solid grains are described by
eparate fields. The multi-component CH system on the curved surface has practical significance and research prospects
or the modeling of many physical phenomena.

Because of the lack of analytical solution for the multi-component Cahn–Hilliard equation under general conditions,
sing numerical methods is an effective way to study the dynamics of vector-valued CH equation. Kim et al. [23] developed
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a second-order accurate fully implicit discretization method of the ternary CH system by using a nonlinear multigrid
method. Copetti [24] proposed an explicit finite element approximation scheme and performed robust experiences to
study phase separation in a ternary mixture system. Bhattacharyya et al. [25] proposed a semi-implicit Fourier spectral
method to study the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility
gap. Lee et al. [26] proposed a second-order temporal accuracy discrete scheme to solve a discrete multi-component
CH system at the implicit time level, in which computational complexity is only O(2(N − 1) × 2(N − 1)). Later, Lee
t al. [27] presented a practically unconditionally gradient stable conservative numerical method for solving the CH system
epresenting a model in a decoupled way. The proposed method can significantly reduce the CPU time and memory
equirements. Steven [28] proposed an efficiency adaptive nonlinear mesh refinement to solve the regularized, strongly
nisotropic CH equation and simulate large-scale coarsening of a corrugated surface. In [29], Yang et al. presented a
omputationally efficient conservative finite difference scheme for solving the N-component Cahn–Hilliard system on
urved surfaces. Li et al. [30] extended the two-dimensional compact scheme for the Cahn–Hilliard equation to three-
imensional space, which has second-order accuracy in time and fourth-order accuracy in space. Yang et al. [31,32]
eveloped a two second-order in time, linear and unconditionally energy stable time marching schemes for solving the
onlocal Cahn–Hilliard phase-field model, which is instructive to solve the nonlinear terms implicitly.
Various numerical methods have been developed to solve the partial differential equation on surfaces [33–38]. For

xample, M.A. Olshanskii and X. Xu [37,38] developed trace finite element method, which uses the restrictions (traces) of
function from the background time-independent finite element space on the reconstructed discrete surface. To the best
f our knowledge, there are very few studies which solve the multi-component Cahn–Hilliard system on curved surfaces.
urthermore, the numerical simulation of the multi-component Cahn–Hilliard system takes considerable CPU time for a
ong time evolution. Therefore, an efficient numerical scheme with good stability on curved surfaces is essential.

In this paper, our main purpose is to develop temporally first- and second-order unconditionally stable direct
iscretization methods for multi-component Cahn–Hilliard system on surfaces. We performed the discretization via a
urface mesh consisting of piecewise triangles and its dual-surface polygonal tessellation. We define the discretizations
f the gradient, divergence, and Laplace–Beltrami operators on triangle surfaces. The proposed schemes, which combine a
inearly stabilized splitting method, have been proved with the unconditionally energy-stable. To our best knowledge, the
chemes developed in this paper are the first provable unconditionally energy stable schemes with second-order accuracy
n time for the N-component Cahn–Hilliard system on surfaces. Various numerical tests will be presented to demonstrate
he robustness and efficiency of our method.

The remainder of this paper is organized as follows. The multi-component CH system is formulated in Section 2. The
mplementation of the proposed numerical scheme is described in Section 3. Various numerical simulation results for
ulti-component CH systems are presented in Section 4. Finally, conclusions are drawn in Section 5.

. Governing equations

In this Section, we introduce an extended phase field model which is used to deal with multi-component systems.
onsidering the evolution of the N-component Cahn–Hilliard equation on an arbitrary surface domain S(s). Let us define
(s, t) = (φ1(s, t), . . . , φN (s, t))T as the vector-valued order parameter, where φi(i = 1, . . . ,N) is the concentration of
ne phase, N is the number of phases in multi-component systems (i.e., concentration fraction of different components)
nd s lies on the surface S and t is the time. Clearly the sum of different components fractions satisfy

φ1 + φ2 + · · · + φN = 1. (1)

hus, all of admissible states of different components can be represented as {φ ∈ RN
|
∑N

i=1 φi = 1, 0 ≤ φi ≤ 1}. In this
model, we use the Ginzburg–Landau free energy to separate the interfaces of N components as:

E(φ) :=

∫
S

(
N∑
i=1

F (φi) +
ϵ2

2

N∑
i=1

|∇sφi|
2

)
dx. (2)

Here the free energy F (φi) is defined as F (φi) = φ2
i (1 − φi)2/4 and ∇s denotes the surface gradient operator on surface.

The evolution of φi is governed by the H−1 gradient of the Ginzburg–Landau energy under Eq. (1) which has to be hold
everywhere at any time. The vector-valued CH equation can be derived from the energy functional as follows:

∂φ(s, t)
∂t

:= ∆sµ(s, t) (3)

µ(s, t) :=
δE(s, t)
δφ(s, t)

= F ′(φ(s, t)) − ϵ2∆sφ(s, t) + α(φ) · 1, (4)

φi(s, 0) = φ0
i (s), i = 1, . . . ,N, (5)

∇sφi · n = ∇sµi · n = 0, s ∈ ∂S, (6)

here µ := (µ1, . . . , µN )T is the chemical potential which is derived from the variational derivative δE
δφi
, (i = 1, 2, . . . ,N)

of energy E , ϵ is a positive gradient energy coefficient, 1 = (1, . . . , 1) ∈ RN , n is the outward unit normal vector to ∂S
2



Y. Li, R. Liu, Q. Xia et al. Journal of Computational and Applied Mathematics 401 (2022) 113778

w

c

H

and ∆s is the well-known surface Laplacian–Beltrami operator. To simplify the presentation, here we consider Neumann
boundary conditions for both the order parameter and the chemical potential. Note that our method works well under
periodic, Neumann, and Dirichlet boundary conditions [33,39,40]. In order to ensure the constraint (1), we use a variable
Lagrange multiplier α(φ) here to correct the sum of all components. Based on Eq. (1), we have

0 =
∂(
∑N

i=1 φi)
∂t

=

N∑
i=1

∂φi

∂t
= ∆s

N∑
i=1

µi = ∆s

( N∑
i=1

F ′(φi) − ϵ2∆s

( N∑
i=1

φi

)
+ Nα(φ)

)
, (7)

hich leads to

α(φ) = −
1
N

N∑
i=1

F ′(φi). (8)

In the present study, the Lagrangian undetermined multiplier α(φ) used in Eq. (8) is based on the form in Refs. [26,27,41,
42] for holding the additional constraint in Eq. (1). The total energy can be deduced to decrease over time as follows:

dE(s, t)
dt

=

∫
S

N∑
i=1

(F ′(φi(s, t))
∂φi(s, t)
∂t

+ ϵ2∇sφi(s, t) · ∇s
∂φi(s, t)
∂t

)ds (9)

=

∫
S

N∑
i=1

(F ′(φi(s, t)) − ϵ2∆sφi(s, t))
∂φi(s, t)
∂t

ds =

∫
Ω

N∑
i=1

(
µi(s, t) − α(φ)

)∂φi(s, t)
∂t

dx

=

∫
S

N∑
i=1

µi(s, t)∆sµi(s, t)ds −

∫
S
α(φ)

∂

∂t

N∑
i=1

φi(s, t)ds = −

∫
S

N∑
i=1

|∇sµi(s, t)|2ds ≤ 0.

Here we have used the Neumann boundary conditions for φ and µ.

3. Numerical method

We now describe the discretizations of the gradient, divergence, and Laplace–Beltrami operators on the triangle
surfaces. Let us define a triangle surface mesh as S = (V , F ), where V = {vi|1 ≤ i ≤ NV } is the vertices set and
F = {Tk|1 ≤ k ≤ NF } is the triangles set. NV and NF are denoted as the numbers of vertices and triangles on the triangle
surface. As shown in Fig. 1, for a given vertex v ∈ V , we use I(v) to denote the index of 1-ring neighbor of the vertex v
onsisting of the 1-ring neighboring vertices vj (j = 0, 1, . . . , n and v0 = vn). The vertices vj are labeled counterclockwise.
Let Tj be the triangle with vertices v, vj, and vj+1 and Gj be the centroid of the triangle Tj, i.e., Gj := (v + vj + vj+1)/3.
Furthermore, let T̂j be the new triangle with vertices v,Gj,Gj+1. The normal vector N(v) can be defined as

N(v) :=

n−1∑
j=0

ωjNj/∥

n−1∑
j=0

ωjNj∥, (10)

where Nj is the unit normal to triangle Tj at the centroid Gj, i.e., Nj :=
(vj−v)×(vj+1−v)

∥(vj−v)×(vj+1−v)∥ . The corresponding centroid weight

is ωj := ∥Gj − v∥−2/
∑n−1

i=0 ∥Gi − v∥−2. The outward normal vectors nvj+1 (Gj) and nvj+1 (Gj+1) at the vertices Gj and Gj+1 are
defined as [43,44]:

nvj+1 (Gj) :=
(Gj+1 − Gj) × Nj

∥(Gj+1 − Gj) × Nj∥
and nvj+1 (Gj+1) :=

(Gj+1 − Gj) × Nj+1

∥(Gj+1 − Gj) × Nj+1∥
. (11)

Here ∥ · ∥ and ⟨·, ·⟩ denote the normal and inner product of vector, respectively. For a small regular surface S̃ by using
Green’s formula, one has∫

S̃
∇d · Xds =

∫
∂S̃

⟨X, n⟩ d∂s. (12)

ere, n is the outer normal vector of the regular surface S̃. We can obtain∫
∇s · Xds ≈ D(v)∇d · X, (13)
S̃

3
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Fig. 1. A vortex v and its neighbors for evaluating the gradient, divergence, and Laplace–Beltrami operators.

ere D(v) :=
∑n−1

j=0 |T̂j| and |T̂j| is the area of T̂j. ∇d· is the discrete divergence operator. On the other hand, it is easy to
get ∫

∂S̃
⟨X, n⟩ d∂s

≈

n−1∑
j=0

(∥Gj+1 − Gj∥)
∫ 1

0

⟨
qX(Gj) + (1 − q)X(Gj+1), qnvj+1 (Gj) + (1 − q)nvj+1 (Gj+1)

⟩
dq

=

n−1∑
j=0

∥Gj+1 − Gj∥

6

(
2
⟨
X(Gj), nvj+1 (Gj)

⟩
+ 2

⟨
X(Gj+1), nvj+1 (Gj+1)

⟩
+
⟨
X(Gj), nvj+1 (Gj+1)

⟩
+
⟨
X(Gj+1), nvj+1 (Gj)

⟩)
. (14)

Here X(Gj) := (X(v) + X(vj) + X(vj+1))/3. Eqs. (12)–(14) suggest that we can define the discrete divergence ∇d · X of a
vector field X at v [33–35,43,44] as

∇d · X(v) :=
1

D(v)

n−1∑
j=0

∥Gj+1 − Gj∥

6

(
2
⟨
X(Gj), nvj+1 (Gj)

⟩
+ 2

⟨
X(Gj+1), nvj+1 (Gj+1)

⟩
+
⟨
X(Gj), nvj+1 (Gj+1)

⟩
+
⟨
X(Gj+1), nvj+1 (Gj)

⟩ )
.

We also have the approximating Laplace–Beltrami operator:

∆dφ(v) :=
1

D(v)

n−1∑
j=0

∥Gj+1 − Gj∥

6

(
2
⟨
∇dφ(Gj), nvj+1 (Gj)

⟩
+ 2

⟨
∇dφ(Gj+1), nvj+1 (Gj+1)

⟩
+
⟨
∇dφ(Gj), nvj+1 (Gj+1)

⟩
+
⟨
∇dφ(Gj+1), nvj+1 (Gj)

⟩ )
.

(15)

The definition of the Laplace–Beltrami operator in Eq. (15), requires the gradient of φ(Gj) at the centroid Gj of each
triangle, i.e., ∇dφ(Gj). We use the Taylor expansion for φ(v), φ(vj) and φ(vj+1) to obtain the approximate surface gradient
f φ(Gj) at the centroid Gj of each triangle:⎧⎪⎨⎪⎩

φ(v) − φ(Gj) =
⟨
∇dφ(Gj), v − Gj

⟩
+ 0.5∆dφ(Gj)∥v − Gj∥

2
+ O(∥v − Gj∥

2),

φ(vj) − φ(Gj) =
⟨
∇dφ(Gj), vj − Gj

⟩
+ 0.5∆dφ(Gj)∥vj − Gj∥

2
+ O(∥vj − Gj∥

2),

φ(vj+1) − φ(Gj) =
⟨
∇dφ(Gj), vj+1 − Gj

⟩
+ 0.5∆dφ(Gj)∥vj+1 − Gj∥

2
+ O(∥vj+1 − Gj∥

2).

(16)

hen, we assume that ∇dφ(Gj) has the following form:

∇ φ(G ) := α (v − G ) + β (v − G ). (17)
d j j j j j j+1 j

4
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where αj and βj are constants. By combining Eqs. (16) and (17), we can further obtain the gradient ∇dφ(Gj) by calculating
he solution αj and βj of the following equation(

αj
βj
γj

)
=

⎛⎝ ⟨
vj − Gj, v − Gj

⟩ ⟨
vj+1 − Gj, v − Gj

⟩
∥v − Gj∥

2⟨
vj − Gj, vj − Gj

⟩ ⟨
vj+1 − Gj, vj − Gj

⟩
∥vj − Gj∥

2⟨
vj − Gj, vj+1 − Gj

⟩ ⟨
vj+1 − Gj, vj+1 − Gj

⟩
∥vj+1 − Gj∥

2

⎞⎠−1

·

(
φ(v) − φ(Gj)
φ(vj) − φ(Gj)
φ(vj+1) − φ(Gj)

)
. (18)

Therefore, we can rewrite the Laplace–Beltrami operator ∆dφ(v) at vertex v as

∆dφ(vi) = Li

⎛⎜⎜⎝
φ(v1)
φ(v2)
...

φ(vNV )

⎞⎟⎟⎠ and

⎛⎜⎜⎝
∆dφ(v1)
∆dφ(v2)

...

∆dφ(vNV )

⎞⎟⎟⎠ =

⎛⎜⎜⎝
L1
L2
...

LNV

⎞⎟⎟⎠
⎛⎜⎜⎝

φ(v1)
φ(v2)
...

φ(vNV )

⎞⎟⎟⎠ , (19)

here Li is a 1 × Nv matrix for i = 1, 2, . . . , Nv , which can be obtained by Eqs. (15)–(18). The Laplace matrix L of
urface S is described as L = (L1, L2, . . . , LNV )

T .

.1. First-order scheme

In this section, we will present a first-order method in time for the multi-component CH system and prove the
nconditional energy stability of this system. To solve Eq. (3), we use the linearly stabilized splitting-type scheme [45–47],
n which the linear terms are treated implicitly and the nonlinear term is treated explicitly. Then Eqs. (3) and (4) can be
iscretized with first-order time accuracy as follows:

φn+1
ij − φn

ij

∆t
= ∆dµ

n+1
ij , (20)

µn+1
ij = F ′(φn

ij ) + λ(φn+1
ij − φn

ij ) − ϵ2∆dφ
n+1
ij + α(φn

j ), (21)

here

α(φn
j ) = −

1
N

N∑
i=1

(F ′(φn
ij ) + λ(φn+1

ij − φn
ij )). (22)

Here φn
ij is an approximation of the concentration of the ith component at time n∆t and location vj, i.e., φi(vj, n∆t), where

= 1, 2, . . . , Nt , ∆t = T/Nt is the time-step, T is the final time, and Nt is the total number of time-steps. λ is a positive
tabilizing parameter. To solve the linear discrete system (20) and (21) at the implicit time level, we rewrite this system
s follows:

(
I ∆tL

−λI + ϵ2L I

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn+1
i1
...

φn+1
iNV
µn+1

i1
...

µn+1
iNV

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn
i1
...

φn
iNV

F ′(φn
i1) − λφn

i1 + α(φn
1)

...

F ′(φn
iNV

) − λφn
iNV

+ α(φn
NV

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

ere, I is the NV ×NV identity matrix. We use the biconjugate gradient stabilized method to solve Eq. (23), which can be
traightforwardly applied to GPU-accelerated biconjugate gradient stabilized implementation by using the Matlab Parallel
omputing Toolbox. Since the residual error converges rather quickly to a tolerance 1e − 8 in few iterations, we do not
se the preconditioner for applying BiCGSTAB.

heorem 3.1. The solution of the first-order method Eqs. (20) and(21) satisfies
∑N

i=1 φ
n+1
ij ≡ 1, if the initial condition satisfies

N
i=1 φ

0
ij ≡ 1.

roof. By summing of all components of Eqs. (20)–(22) for any vj, we obtain⎡⎢⎢⎢⎣
∑N

i=1(φ
n+1
i1 −φni1)
∆t
...∑N

i=1(φ
n+1
iNV

−φniNV
)

⎤⎥⎥⎥⎦ =

⎡⎢⎣
∑N

i=1(∆dµ
n+1
i1 )

...∑N
i=1(∆dµ

n+1
iN )

⎤⎥⎦ =

⎡⎢⎣∆d
∑N

i=1(µ
n+1
i1 )

...

∆d
∑N

i=1(µ
n+1
iN )

⎤⎥⎦ =

⎡⎢⎣∆d(
∑N

i=1 −ϵ2∆dφ
n+1
i1 )

...

∆d(
∑N

i=1 −ϵ2∆dφ
n+1
iN )

⎤⎥⎦ (24)
∆t V V V

5
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i.e.,
(
I + ϵ2∆t∆2

d

)⎡⎢⎣
∑N

i=1 φ
n+1
i1

...∑N
i=1 φ

n+1
iNV

⎤⎥⎦ =

⎡⎢⎣
∑N

i=1 φ
n
i1

...∑N
i=1 φ

n
iNV

⎤⎥⎦ , (25)

here I denotes the identity operator. Here we have used Eq. (22) and telescoping cancellation
∑N

i=1 F
′(φn

ij )+ λ(φn+1
ij −

n
ij ) + Nα(φn

j ) = 0 in Eq. (24). According to the Levy–Desplanques theorem, I + ϵ2∆t∆2
d is non-singular as a strictly

iagonally dominant matrix (or an irreducibly diagonally dominant matrix). According to the recursive property of the
ormula, Eq. (25) can be written as

(
I + ϵ2∆t∆2

d

)n+1

⎡⎢⎣
∑N

i=1 φ
n+1
i1

...∑N
i=1 φ

n+1
iNV

⎤⎥⎦ =

⎡⎢⎣
∑N

i=1 φ
0
i1

...∑N
i=1 φ

0
iNV

⎤⎥⎦ . (26)

hen
∑N

i=1 φ
n+1
ij ≡ 1 is a unique solution, because

(
I+ϵ2∆t∆2

d

)n+1
is the invertible operator and

∑N
i=1 φ

0
ij ≡ 1. Therefore

we can obtain
∑N

i=1 φ
n
ij ≡ 1 for all n > 0 with the initial condition

∑N
i=1 φ

0
ij ≡ 1. □

Due to Theorem 3.1, Eq. (22) can be simplified as

α(φn
j ) = −

1
N

n∑
i=1

F ′(φn
ij ). (27)

heorem 3.2. The first-order numerical scheme has the total mass conservation property and satisfies
∑

vj∈S φ
n+1
ij D(vj) =

vj∈S φ
n
ijD(vj).

roof. By taking the l2 inner product of
∑

vj∈S φ
n+1
ij and

∑
vj∈S φ

n
ij with D(v), through the difference operation we can

btain that∑
vj∈S

φn+1
ij D(vj) −

∑
vj∈S

φn
ijD(vj)

= ∆t
∑
vj∈S

∆dµ
n+1
ij D(vj)

= ∆t
∑
vj∈S

( n−1∑
k=0

∥Gk+1 − Gk∥

3

(
2
⟨
∇dµ

n+1
i (Gk), nvk+1 (Gk)

⟩
+ 2

⟨
∇dµ

n+1
i (Gk+1), nvk+1 (Gk+1)

⟩
+
⟨
∇dµ

n+1
i (Gk), nvk+1 (Gk+1)

⟩
+
⟨
∇dµ

n+1
i (Gk+1), nvk+1 (Gk)

⟩ ))
. (28)

Let GkGk+1 denote the edge of GkGk+1. It is obvious that GkGk+1 belongs to the dual mesh D(vj) with the vertex vj and the
adjacent neighbor dual mesh D(vk+1) of the vertex vk+1. Therefore, in Eq. (28), we can rewrite this summation in terms
of the edges S in the dual mesh SD:∑

vj∈S

φn+1
ij D(vj) −

∑
vj∈S

φn
ijD(vj)

= ∆t
∑

GkGk+1∈S̃

(
∥Gk+1 − Gk∥

3

(
2
⟨
∇dµ

n+1
i (Gk), nv(Gk)

⟩
+ 2

⟨
∇dµ

n+1
i (Gk+1), nv(Gk+1)

⟩
+
⟨
∇dµ

n+1
i (Gk), nv(Gk+1)

⟩
+
⟨
∇dµ

n+1
i (Gk+1), nv(Gk)

⟩
+ 2

⟨
∇dµ

n+1
i (Gk), nvk+1 (Gk)

⟩
+ 2

⟨
∇dµ

n+1
i (Gk+1), nvk+1 (Gk+1)

⟩
+

⟨
∇dµ

n+1
i (Gk), nvk+1 (Gk+1)

⟩
+
⟨
∇dµ

n+1
i (Gk+1), nvk+1 (Gk)

⟩ ))
.

6
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It should be noted that in Eq. (28), the sum in the last term is for the vertex v. Since all vertices are labeled
ounterclockwise, we can recalculate nvk+1 (Gk) and nvk+1 (Gk+1) as

nvk+1 (Gk) =
(Gk − Gk+1) × Nk

∥(Gk − Gk+1) × Nk∥
= −nv(Gk) and

nvk+1 (Gk+1) =
(Gk − Gk+1) × Nk+1

∥(Gk − Gk+1) × Nk+1∥
= −nv(Gk+1). (29)

y substituting Eq. (29) into Eq. (28) yields, we have∑
vj∈S

φn+1
ij D(vj) −

∑
vj∈S

φn
ijD(vj) = 0,

which suggests that the proposed numerical scheme conserves the total mass. □

Let us define the discrete energy as

E(φn) =

N∑
i=1

(
(F (φn

i ), 1)d +
ϵ2

2
∥∇dφ

n+1
i ∥

2
d

)
. (30)

ere the discrete l2 inner product at the vertex and centroid of the triangle face can be represented as

(φi, ψi)d =

NV∑
j=1

φijψijDj and (∇dφi,∇dψi)d =

NV∑
j=1

[
Dj

n−1∑
k=0

∇dφi(Gjk) · ∇dψi(Gjk)

]
,

here Dj = D(vj) for j = 1, 2, . . . , NV . In this paper, we consider φ0
i ∈ [0, 1] and restrict our attention to the order

parameter φi which is bounded, i.e. there exists a constant M (independent of φi) such that |φi| ≤ M. However, since
the CH equation does not satisfy the maximum principle, it is very difficult to analytically prove that the solution for the
CH equation is bounded. Yue et al. [48] noted that the equilibrium solution to the CH equation is in [−β, 1 + β], where
β is a small value related to the thickness ϵ. Li and Kim [33] point that the solution of the CH equation is not equal to,
but similar to a hyperbolic tangent profile. In the other hand, if the maximum norm of initial condition φ0

i is bounded
by 1, then the solution for the CH equation is bounded based on our numerical experiments. We note that the condition
|φi| ≤ M can be satisfied by many physically relevant potentials, because changing the double-well potential F allows to
find a global bound for |F ′′

| or changing F for |φi| ≥ M may in practice result in |φi| ≤ 2M. Therefore, we can consider
an assumption, i.e., max |F ′′(φi)| = |3M2

− 3M + 0.5| ≤ Q and Q is a positive constant.

heorem 3.3. If λ ≥ Q/2, the scheme Eqs. (20)–(22) satisfy

E(φn+1) ≤ E(φn) (31)

roof. By taking the l2 inner product of Eq. (20) with µn+1
i , we obtain

(φn+1
i − φn

i , µ
n+1
i )d = ∆t(∆dµ

n+1
i , µn+1

i )d = −∆t∥∇dµ
n+1
i ∥

2
d. (32)

By taking the l2 inner product of Eq. (21) with φn+1
i − φn

i , we obtain

(F ′(φn
i ), φ

n+1
i − φn

i )d = (F (φn+1
i ) − F (φn

i ), 1)d −
1
2
F ′′(ψ̂n

i )∥φ
n+1
i − φn

i ∥
2
d, (33)

λ(φn+1
i − φn

i , φ
n+1
i − φn

i )d = λ∥φn+1
i − φn

i ∥
2
d, (34)

ϵ2(∆dφ
n+1
i , φn+1

i − φn
i )d = ϵ2(∇dφ

n+1
i ,∇dφ

n+1
i − ∇dφ

n
i )d

=
ϵ2

2
(∥∇dφ

n+1
i ∥

2
d + ∥∇dφ

n+1
i − ∇dφ

n
i ∥

2
d − ∥∇dφ

n
i ∥

2
d), (35)

(α(φn), φn+1
i − φn

i )d =

(
−

1
N

N∑
F ′(φn

i ), φ
n+1
i − φn

i

)
d
, (36)
i=1

7
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where we have used the Taylor expansion and mean value theorem for definite integrals in Eq. (33) and ψ̂i
n

∈ [−M, M].
y combining the above Eqs. (32)–(36), we have(

F (φn+1
i ) − F (φn

i ), 1
)
d +

ϵ2

2

(
∥∇dφ

n+1
i ∥ − ∥∇dφ

n
i ∥
)

= −∆t∥∇dµ
n+1
i ∥

2
d + −

(
λ−

1
2
F ′′(ψ̂n

i )
)

∥φn+1
i − φn

i ∥
2
d −

ϵ2

2
∥φn+1

i − φn
i ∥

2
d − (α(φn), φn+1

i − φn
i )d.

Then we can get

E(φn+1) − E(φn) =

N∑
i=1

(
−∆t∥∇dµ

n+1
i ∥

2
d −

(
λ−

1
2
F ′′(ψ̂n

i )
)
∥φn+1

i − φn
i ∥

2
d −

ϵ2

2
∥φn+1

j − φn
j ∥

2
d

)
− α(φn)

(
1,

N∑
i=1

φn+1
i

)
d
− α(φn)

(
1,

N∑
i=1

φn
i

)
d

< −

N∑
i=1

(
∆t∥∇dµ

n+1
i ∥

2
d +

(
λ−

1
2
F ′′(M)

)
∥φn+1

i − φn
i ∥

2
d +

ϵ2

2
∥φn+1

j − φn
j ∥

2
d

)
≤ 0. (37)

he proof is completed. □

.2. Second-order scheme

In this section, we propose a method for the multi-component CH equation, which can be discretized with second-order
ime accuracy as follows:

φn+1
ij − φn

ij

∆t
= ∆dµ

n+ 1
2

ij , (38)

µ
n+ 1

2
ij = F ′(φ̃

n+ 1
2

ij ) − λφ̃
n+ 1

2
ij + λφ

n+ 1
2

ij − ϵ2∆dφ
n+ 1

2
ij + α(φ̃

n+ 1
2

j ). (39)

here φ̃
n+ 1

2
ij = (3φn

ij − φn−1
ij )/2, φ

n+ 1
2

ij = (φn+1
ij + φn

ij )/2, and α(φ̃
n+ 1

2 ) = −
∑N

i=1 F
′(φ̃

n+ 1
2

ij )/N .
To solve the linear discrete system (38) and (39) at the implicit time level, we can rewrite this system in a similar

manner as Eq. (23) and solve it by using the biconjugate gradient stabilized method. The detail descriptions will be omitted
here.

Let us define the discrete pseudo energy as

Ēd(φn+1,φn) =

N∑
i=1

(
F (φn+1

i ), (1)d +
ϵ2

2
∥∇dφ

n+1
i ∥

2
d +

2λ− F ′′(ξi)
4

∥φn+1
i − φn

i ∥
2
d

)
. (40)

Here, ξi are constants which satisfy(
F ′(φ̃i

n+ 1
2 ), φn+1

i − φn
i

)
d

=
(
F (φn+1

i ) − F (φn
i ), 1

)
d −

1
2
F ′′(ξi)(φn+1

i − 2φn
i + φn−1

i , φn+1
i − φn

i )d.

heorem 3.4. The second-order numerical scheme satisfies the total mass conservation property and satisfies∑
vj∈S

φn+1
ij D(vj) =

∑
vj∈S

φn
ijD(vj),

roof. For a more detailed verification, please refer to the similar Theorem 3.2. □

heorem 3.5. The solution in the second-order method Eqs. (38) and (39) satisfies
∑N

i=1 φ
n+1
ij ≡ 1 if an initial condition

satisfies
∑N

i=1 φ
0
ij ≡ 1.

Proof. For a more detailed verification, please refer to the similar Theorem 3.3. □

Theorem 3.6. If φn+1, φn, and φn−1 are the solutions of Eqs. (38) and (39), then under the condition λ ≥ Q/2, the following
energy law holds for any time step ∆t:

Ēd(φn+1,φn) ≤ Ēd(φn,φn−1). (41)
8
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Proof. By taking the l2 inner product of Eq. (38) with µ
n+ 1

2
i for any vj, we obtain

(φn+1
i − φn

i , µ
n+ 1

2
i )d = ∆t(∆dµ

n+ 1
2

i , µ
n+ 1

2
i )d = −∆t∥∇dµ

n+ 1
2

i ∥
2
d. (42)

y taking the l2 inner product of Eq. (39) with φn+1
i − φn

i , we obtain

(φn+1
i − φn

i , µ
n+ 1

2
i )d =

(
F ′(φ̃

n+ 1
2

i ) − λφ̃
n+ 1

2
i + λφ

n+ 1
2

i − ϵ2∆dφ
n+ 1

2
i + α(φ̃

n+ 1
2 ), φn+1

i − φn
i

)
. (43)

Here, we can obtain(
F ′(φ̃i

n+ 1
2 ), φn+1

i − φn
i

)
d

=
(
F (φn+1

i ) − F (φn
i ), 1

)
d −

1
2
F ′′(ξi)(φn+1

i − 2φn
i + φn−1

i , φn+1
i − φn

i )d, (44)(
λ(φ

n+ 1
2

i − φ̃
n+ 1

2
i ), φn+1

i − φn
i

)
d

=
λ

2

(
∥φn+1

i − φn
i ∥

2
d + ∥φn+1

i − 2φn
i + φn−1

i ∥
2
d − ∥φn

i − φn−1
i ∥

2
d

)
, (45)

ϵ2(∆dφ
n+ 1

2
i , φn+1

i − φn
i )d =

ϵ2

2
(∆dφ

n+1
i +∆dφ

n
i , φ

n+1
i − φn

i )d =
ϵ2

2
(∥∇dφ

n
i ∥

2
d − ∥∇dφ

n+1
i ∥

2
d). (46)

By combining Eqs. (40), (42)–(46), we can obtain(
(F (φn+1

i ), 1)d +
ϵ2

2
∥∇dφ

n+1
i ∥

2
d +

2λ− F ′′(ξi)
4

∥φn+1
j − φn

j ∥
2
d

)
−

(
(F (φn

i ), 1)d +
ϵ2

2
∥∇dφ

n
i ∥

2
d +

2λ− F ′′(ξi)
4

∥φn
j − φn−1

j ∥
2
d

)
= −∆t∥∇dµ

n+ 1
2

i ∥
2
d −

2λ− F ′′(ξi)
4

∥φn+1
i − 2φn

i + φn−1
i ∥

2
d − (α(φ̃

n+ 1
2 ), φn+1

j − φn
j )d. (47)

Therefore, we have

Ēd(φn+1,φn) − Ēd(φn,φn−1) = −

N∑
i=1

(
∆t∥∇dµ

n+ 1
2

i ∥
2
d +

2λ− F ′′(ξi)
4

∥φn+1
i − 2φn

i + φn−1
i ∥

2
d

)
+

(
α(φ̃

n+ 1
2 ),

N∑
i=1

φn+1
i

)
d
−

(
α(φ̃

n+ 1
2 ),

N∑
i=1

φn
i

)
d

≤ −

N∑
i=1

(
∆t∥∇dµ

n+ 1
2

i ∥
2
d +

2λ− F ′′(M)
4

∥φn+1
i − 2φn

i + φn−1
i ∥

2
d

)
≤ 0. □ (48)

Hence, the discrete version of the original energy is non-increasing in time. Therefore, our proposed method is
unconditionally energy-stable with a suitable stabilizing parameter λ. It should be noted that the stabilizing parameter λ
is chosen as λ ≥ Q/2, which make the energy strictly non-increasing. If φ0

i ∈ [0, 1], then max |F ′′(φ0
i )| = 0.5. Therefore,

in practical simulation, Q and λ may only need to set to Q = 1 and λ = 0.5, because ∆t∥∇dµ
n+ 1

2
i ∥

2
d may be not smaller in

qs. (37) and (48). Compared to the fully Crank–Nicolson scheme, our scheme only requires solving an elliptic equation
ith constant coefficients at each time step, which makes our method easy to implement.

. Numerical experiments

In this section, we perform various numerical experiments to demonstrate the non-increasing discrete energy, mass
onservation, and the stability of our method. Several tests will be performed to show the temporal evolution of multi-
omponent mixture on complex surface and specified domain. Unless otherwise specified, we take ϵ = 0.05. To
enerate an oriented triangular mesh connecting with the surface points, we employ the triangle mesh generation
lgorithm [49–53], in which mesh quality can be significantly improved.

.1. Non-increasing discrete energy and mass conservation

In this section, we simulated the phase separation of a four-component system on a unit sphere surface. The edge of
very triangle on the sphere surface is almost the same as h = 0.05. We randomly select four components φa(v) = rand(v),
b(v) = rand(v), φc(v) = rand(v), and φd(v) = rand(v). Here rand() is a random number between 0 and 1. Note that
a ̸= φb ̸= φc ̸= φd. The initial conditions are chosen as⎧⎪⎪⎨⎪⎪⎩

φ1(v, 0) = φa(v)/
(
φa(v) + φb(v) + φc(v) + φd(v)

)
φ2(v, 0) = φb(v)/

(
φa(v) + φb(v) + φc(v) + φd(v)

)
φ3(v, 0) = φc(v)/

(
φa(v) + φb(v) + φc(v) + φd(v)

)( ) (49)
φ4(v, 0) = φd(v)/ φa(v) + φb(v) + φc(v) + φd(v)
9
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Fig. 2. Evolution of four phases φ using the second order numerical scheme. From left to right, they are the results at t = 0, 120, 240, and 400.
The red, blue, green and yellow regions indicate φ1 , φ2 , φ3 and φ4 , respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. (a) The non-increasing discrete and pseudo energy for first- and second-order numerical schemes. Here the total energy is normalized by
the total energy at the initial time. (b) Mass conservations for first- and second-order numerical schemes.

The calculation is run until t = 400 with a time step ∆t = 0.1. Fig. 2 shows the evolution of four phases φ using the
econd order numerical scheme. From left to right, they are the results at t = 0, 120, 240, and 400. The red, blue,
reen and yellow regions indicate φ1, φ2, φ3 and φ4, respectively. Fig. 3(a) and (b) show that the total discrete energy
nd the pseudo energy of our proposed method are non-increasing with time and mass concentration remains constant,
espectively.

.2. Convergence test

In this section, we perform two numerical experiments to verify the convergence of the first and second order
umerical schemes by performing a number of simulations with increasingly finer grids h = 0.2, 0.1, 0.05, and 0.025
n the unit sphere surface. The initial conditions are chosen as⎧⎪⎪⎨⎪⎪⎩

φ1(x, y, z, 0) = 0.25 + 0.25sin(2πx) sin(2πy) sin(2πz)
φ2(x, y, z, 0) = 0.25 + 0.25cos(2πx) cos(2πy) cos(2πz)
φ3(x, y, z, 0) = 0.25 − 0.25sin(2πx) sin(2πy) sin(2πz)
φ4(x, y, z, 0) = 0.25 − 0.25cos(2πx) cos(2πy) cos(2πz)

(50)

Then the phase separations will be performed with initial conditions of the same mass fraction. Since there is no
analytical solution, we assume that the numerical solution generated by the very fine space step h = 0.005 and very fine
time step ∆t = 1 × 10−6. We define the error of a grid as the discrete l2-norm of the difference between that grid and
the average of the reference solution cells neighboring it as follows: eh, ∆t i := φh, ∆t i − (ζiφref

p + ηiφ
ref
q + θiφ

ref
r ). Here, p, q,

and r are fine reference grid indexes in a triangle. Furthermore, ζi, ηi, and θi satisfy vh, ∆t i = ζivrefp +ηivrefq +θivrefr . The rate
of convergence is defined as the ratio of successive errors: log2

(
∥eh, ∆t∥2/∥e h

2 ,
∆t
2

∥2
)
. For each grid we integrate over time

T = 1 with time steps ∆t = h2 and ∆t = 0.1h for the first and second order numerical schemes, respectively. The ratio
of successive errors can be expected to increase by a factor of 2, i.e., ∥eh, ∆t∥2 = O(∆t + h2) = O(h2), because ∆t = h2

and ∆t = 0.1h are chosen for Eqs. (20)–(21) and Eqs. (38)–(39), respectively. Table 1 shows the convergence rates and l2
errors of the first- and second-order numerical schemes, respectively. The results suggest that the scheme Eqs. (20)–(21)
have second-order accuracy in space and first-order accuracy in time, as expected from the discretization. Furthermore,
second-order accuracy with respect to space and time for Eqs. (38)–(39) is observed in Table 1.
10
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Table 1
Convergence rate and error of the proposed schemes. The time steps ∆t = h2 and
∆t = 0.1h are chosen for the first and second order numerical schemes, respectively.
h First-order scheme Second-order scheme

l2 error Rate l2 error Rate

0.2 2.984 × 10−3 1.071 × 10−3

0.1 7.395 × 10−4 2.01 2.556 × 10−4 2.06
0.05 1.781 × 10−4 2.05 6.363 × 10−5 2.00
0.025 4.051 × 10−5 2.13 1.457 × 10−5 2.12

Fig. 4. Stability of (a) first order scheme and (b) second order scheme. The inset subfigures show the morphology of the phase field at the indicated
imes. Note that we have normalized the total energy by the total energy at the initial time.

.3. Stability analysis of proposed scheme

The difficulty for an efficient numerical scheme is with the high-order accuracy and strong numerical stability, because
he CH equation involves fourth-order spatial derivatives and a nonlinear term. To show the accuracy of the proposed
cheme defined in Eqs. (38) and (39), we perform a numerical experiment using a large time step, ∆t = 1000. The initial
ondition and parameters are set as shown in Section 4.1. The calculations are run until time T = 80000 and the numerical
olutions are shown in Fig. 4(a) and (b). The two figures show that the mass and total energy evolutions, which suggest
hat our proposed first- and second-order schemes are indeed unconditionally stable. It is well-known that using a larger
ime step will cause large error of the numerical solutions. Therefore, a small time step will be used for highly accurate
umerical solutions. To maintain our proposed scheme’s accuracy and reduce computational costs, an appropriate value
or ∆t is ∆t = 0.2h.

.4. Multi-phase separation on unit sphere surface

In this simulation, we consider the multi-phase evolution of two-, three-, four-, and five-component with the same
ass fractions on the unit sphere. We use h = 0.05 and ∆t = 0.01 on the unit spherical surface. The selection of the

nitial conditions is similar to Section 4.1. Fig. 5 shows the temporal evolutions of two-, three-, four-, five-component
ystems, respectively. From the left to right, the times in each row are t = 0, 120, 240, and 480, respectively. Each color
represents a substance and the phase separation has occurred clearly. As can be seen from these results, our method can
effectively simulate multi-component phase separation.
11
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Fig. 5. Time evolution of multi-component separation on sphere surface. From top to bottom, there are the results of evolution for two-, three-,
our-, five-component, respectively. From left to right, the computational times are t = 0, 120, 240, and 480, respectively. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

.5. Time evolution of multi-phase mixture on complex surface

We consider the numerical simulations of three- and five-component the multi-phase separation on more complex
hree-dimensional surface such as a bunny surface. Here, we set the initial condition as⎧⎨⎩

φ1(v, 0) = 0.5 cos4(0.5rand(v))
φ2(v, 0) = 0.5 sin4(0.5rand(v))
φ3(v, 0) = 1 − φ1(v, 0) − φ2(v, 0),

(51)

nd ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ1(v, 0) = 0.5 cos4(0.5rand(v))
φ2(v, 0) = 0.5 sin4(0.5rand(v))
φ3(v, 0) = 0.4 sin2(rand(v))
φ4(v, 0) = 0.5 cos2(rand(v))
φ5(v, 0) = 1 − φ1(v, 0) − φ2(v, 0) − φ3(v, 0) − φ4(v, 0),

(52)

here rand(v) is a random number between 0 and 1. Fig. 6(a) and (b) show the phase separation of three-component
nd five-component mixtures on complex surfaces, respectively. Simulations are run until time t = 160 with a time step
t = 0.01.
12
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Fig. 6. The temporal evolution of a multi-phase mixture on complex surface with (a) three-component and (b) five-component.

Fig. 7. Time evolution of phase separation in specified domain on bunny surface. From left to right, the computational times are t = 0, 5, 25, 50,
nd 100, respectively. φ1 , φ2 and φ3 are represented by the red, blue, and green region, respectively. (a) φ1 is not fixed. (b)φ1 is fixed over time.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.6. Phase separation in a specified domain on complex surface

In this test, we simulate the binary phase separation in a specified domain on a bunny surface. The initial conditions
re chosen as

φ1(v, 0) =

{
1 inside the red region,
0 otherwise,

φ2(v, 0) = [1 − φ1(v, 0)][0.3 + 0.4rand(v)],
φ3(v, 0) = 1 − φ1(v, 0) − φ2(v, 0).

ig. 7 shows the time evolution of phases φ1, φ2, and φ3. Here, φ1, φ2 and φ3 are represented by the red, blue, and green
egion, respectively. From left to right, the computational times are t = 0, 5, 25, 50, and 100, respectively. ∆t = 0.01
s chosen. In Fig. 7(a), we obtain the solutions φ1, φ2 and φ3 by solving Eqs. (38) and (39). While in Fig. 7(b), we fix
1(v, t) = φ1(v, 0) and obtain the solutions φ2 and φ3 by solving Eqs. (38) and (39). From the results, we can see that if φ1

s fixed over time, the phase separation only occurs inside the specified domain, which is represented by the initial shape
f phase φ1. These results imply that our algorithm performs well in specified domain of the complex surface. It should be
oted that the phase separation on the fixed surface is only considered in this paper. We can derive the multi-component
ahn–Hilliard system on evolving surfaces by using a conservation law and transport formulae [34] in the future work.
13
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Fig. 8. Evolution of three component Cahn–Hilliard equation on an airplane surface. (a) Airplane surface. (b-d) are the results at time t = 1, 5, and
20, respectively. From top to bottom, these are the results in vertical and horizontal views, respectively.

4.7. Multi-component phase separation on real surfaces

To demonstrate the performance of the proposed numerical method, we consider the multi-component phase
separation on real surfaces such as airplane. The airplane surface is set in a box (0, 100)×(0, 70)×(0, 25) and is discretized
by using an unstructured triangular mesh 313943 vertices and 627846 triangles. The following initial condition are chosen
φ1(v, 0) = 0.5 cos4(0.5rand(v)), φ2(v, 0) = 0.5 sin4(0.5rand(v)), and φ3(v, 0) = 1−φ1(v, 0)−φ2(v, 0). The simulation is run
up to time t = 20 with ∆t = 0.01. Fig. 8(a) shows the airplane surface. Fig. 8(b-d) shows the results of three component
phase separation on the airplane surface at time t = 1, 5, and 20, respectively. The first and second row show the results
in vertical and horizontal views, respectively. These results confirm that the proposed algorithm performs well and results
in high visual quality on the complex real surface.

5. Conclusion

In this paper, we propose temporally first- and second-order unconditionally stable direct discretization methods
for multi-component Cahn–Hilliard system on surfaces. Discretization is performed via a surface mesh consisting of
piecewise triangles and its dual-surface polygonal tessellation. The proposed scheme, which uses linearly stabilized
splitting schemes, has been proved with the unconditionally energy stable. The resulting system of discrete equations is
solved using a biconjugate gradient stabilized method. We performed several numerical experiments, testing the non-
increasing property of discrete energy and mass conservation, the stability of the proposed scheme, time and space
convergence, spinodal decomposition with multi-component on different complex surfaces, spinodal decomposition in
the specified domain. The numerical experiments demonstrated that our proposed algorithm is fast and efficient.
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