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a b s t r a c t

We present first- and second-order unconditionally energy stable schemes for fluid-
based topology optimization problems. Our objective functional composes of five terms
including mechanical property, Ginzburg–Landau energy, two penalized terms for solid,
and the volume constraint. We consider the steady-state Stokes equation in the fluid
domain and Darcy flow through porous medium. By coupling a Stokes type equation
and the Allen–Cahn equation, we obtain the evolutionary equation for the fluid-based
topology optimization. We use the backward Euler method and the Crank–Nicolson
method to discretize the coupling system. The first- and second-order accurate schemes
are presented correspondingly. We prove that our proposed schemes are unconditionally
energy stable. The preconditioned conjugate gradient method is applied to solve the
system. Several numerical tests are performed to verify the efficiency and accuracy of
our schemes.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Topological optimization for Stokes flow has been applied to many fields such as fluid flow, species transport, heat
ransfer and mechanical engineering [1–9]. Up to now, a great number of methods have been proposed to solve topology
ptimization problem of fluid, including the explicit boundary methods [10,11], surface-capturing methods [12–15] and
ensity-based methods [16–19]. The explicit boundary method is based on a classical physics. However, fully re-meshing
nd regularization of the interface may pose difficulties in computing. For surface-capturing methods, the interface can
asily couple different physics because of its well-defined and crisp interface. The density-based method recently has
ecome more and more popular [20–22]. The phase field method has been developed as a way to describe phase transition
henomena such as solid–liquid transitions [23,24]. In this method, the thin transition region replaces the sharp interface
nd smooth continuous variable is introduced to locate phase or grains boundaries avoiding the explicit front tracking.
Duan et al. [25] considered topology optimization of two immiscible fluids. They combined a diffuse interface model

ith the level set method to implement their proposed method. Coffin and Maute [26] used the level set method to
escribe the geometric shape and used the extended finite element method (XFEM) to predict the temperature field.
y introducing a spatial gradient constraint of the level set field, they solved the topology optimization of convective
eat transfer problems in two and three dimensions. Li et al. [27] applied the phase field method to fluid-based shape
ptimization and used FEM to solve this problem. Instead of using fixed meshes globally, the locally refined mesh

∗ Corresponding author.
E-mail addresses: yibaoli@xjtu.edu.cn (Y. Li), cfdkim@korea.ac.kr (J. Kim).
URLs: http://gr.xjtu.edu.cn/web/yibaoli (Y. Li), https://mathematicians.korea.ac.kr/cfdkim (J. Kim).
https://doi.org/10.1016/j.cnsns.2022.106433
1007-5704/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cnsns.2022.106433
http://www.elsevier.com/locate/cnsns
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2022.106433&domain=pdf
mailto:yibaoli@xjtu.edu.cn
mailto:cfdkim@korea.ac.kr
http://gr.xjtu.edu.cn/web/yibaoli
https://mathematicians.korea.ac.kr/cfdkim
https://doi.org/10.1016/j.cnsns.2022.106433


Y. Li, K. Wang, Q. Yu et al. Communications in Nonlinear Science and Numerical Simulation 111 (2022) 106433

a
w
p
m
a
T
a
h
C
g
g
a
a
t
I
e
t
f

p
S

2

t
t
Ω

near the interface was used, which had advantages of low computational expense. In the previous studies, the energy
stability [28–31] of their schemes were not proved. Chen et al. [32] proposed a topology optimization for fluids with the
Stokes equation by using an efficient threshold dynamics method. They solved this problem by the iterative scheme in
which they had proved the total energy decaying property. These existing works include the first-order [33], the second-
order [34], and the third-order energy stable linear schemes [35] for the thin film equations without slope selection.
Stabilization and regularization terms have been extensively studied. Yang and Kim developed an unconditionally stable
linear numerical scheme for the N-component Cahn–Hilliard system with second-order accuracy in time and space [36].
In our previous paper, we proposed the phase field method to deal with the compliance minimization problem in
topology optimization [37]. The developed equation coupled the diffusive interface dynamics and the linear elasticity
solid mechanics. The energy stability and convergence analysis have been theoretically justified.

In this paper, we use the linear energy stability for the fluid-based topology optimization in the different contexts and
pplications. We consider the steady-state Stokes equation in the fluid domain and Darcy flow through porous medium,
hich have been introduced for topology optimization in fluid flow in [38,39]. The objective functional composes of five
arts including a term for the fluid mechanical property, Ginzburg–Landau energy, two penalized terms for the solid
echanical property, and one penalized term for the volume constraint. This results in a diffuse interface problem, which
pproximates a sharp interface problem for topology optimization in fluids that is penalized by four perimeter terms.
he diffuse interface model has advantages in describing topological changes in fluid flow [40–42]. We present first-
nd second-order unconditionally energy stable schemes for fluid-based topology optimization problems. Energy stability
as been widely investigated for numerical schemes of classic PDE-based phase field models. The backward Euler and
rank–Nicolson type methods are used to discretize the coupling governing system. We use the preconditioned conjugate
radient method to solve this system. The proofs of the unconditional energy stabilities of the proposed schemes will be
iven. Several numerical tests will be performed to verify the efficiency and accuracy of the proposed schemes. Topology
nd shape optimization are sub-fields within structural optimization. Shape optimization methods work in a subset of
llowable shapes which have fixed topological properties. Topological optimization method can then help work around
he limitations of pure shape optimization. Our method can be used to obtain the topology and shape optimized structures.
t should be noted that in [37], we have proposed an efficient method to find the optimal distribution of materials for
lasticity. While in this paper, we focus on the fluid-based topology optimization method. The different context leads
o significantly different governing equation and numerical scheme. The main contributions can be summarized as the
ollowing:

• We present first-order and second-order unconditionally energy stable schemes for fluid-based topology optimiza-
tion problem.

• We prove the unconditional energy stabilities of the proposed two schemes. Therefore, we can use a larger time step
and obtain the convergent solution of the original topology optimization problem.

• The proposed method is simple and easy to implement because only two Poisson-type equations and one heat-type
equation need to be solved.

The paper is organized as follows. In Section 2, we formulate the model for fluid-based topology optimization using
hase field method. The proposed numerical schemes and their proofs of unconditional energy stability are shown in
ection 3. In Section 4, several numerical results are presented. The conclusion is given in Section 5.

. Topology optimization for Stokes flow

In this section, a mathematical model for topology optimization of fluids in Stokes flow is considered. The compu-
ational domain is denoted by Ω ∈ Rd(d = 2, 3) and the outer normal vector for Ω is denoted by n. For any x ∈ Ω ,
he order parameter φ(x) is a function of bounded variation in Ω . Here, φ(x) is defined by φ(x) = 1 in the solid region
\Ω0 and φ(x) = 0 in the fluid region Ω0 ⊂ Ω . The basic problem of topology optimization is to determine an optimal

shape of Ω0 which minimize the following objective functional consisting of the total potential power and a perimeter
regularization term:

min
(φ,u)

J0(φ, u) =

∫
Ω

(µ
2

|∇u|
2
− f · u

)
dx + γΓ (Ω0), (2.1)

which subjects to

φ = 1 or φ = 0 in Ω, (2.2)

and

∇p − ∇ · (µ∇u) = f in Ω0, (2.3)
∇ · u = 0 in Ω, (2.4)

u = 0 in Ω\Ω0, (2.5)
f = 0 in Ω\Ω , (2.6)
0

2
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n · ∇p = 0 on ∂Ω,
u = g on ∂Ω,∫

Ω

φdx = V0, (2.7)

here Γ (Ω0) represents the perimeter term of Ω0. u denotes the velocity of the fluid, ∇u is the distributional derivative
f u, p is the pressure, µ > 0 represents the viscosity of the fluid, f represents external forces loaded on the domain Ω .
t should be noted that the velocity of the fluid is defined not only on the fluid region Ω0, but rather on the whole of
, because the velocity is determined by the stationary Stokes equation (Eq. (2.3)) in Ω0, and on the remainder we set

he velocity equal to zero (Eq. (2.5)). Therefore, the force f and velocity u are defined in the whole domain Ω . V0 is the
volume of the solid region and γ > 0 is a weighting parameter. In addition, the objective functional

∫
Ω

(
µ

2 |∇u|
2
− f ·u

)
dx

escribes the total potential power. Because Ω0 := {φ = 0}, Eq. (2.7) can be rewritten as
∫
Ω
φdx =

∫
Ω\Ω0

φdx = V0. For

a more detailed introduction to the theory of Caccioppoli sets and the perimeter term, please refer to [43]. For simplicity
of exposition, Dirichlet boundary condition u = g is applied on ∂Ω . Note that our method can also be extended to cases
involving periodic and Neumann boundary conditions. In the objective functional (Eq. (2.1)), we replace the perimeter
functional Γ (Ω0) by the Ginzburg–Landau energy, which is defined as:

E(φ) =

∫
Ω

( ε
2
|∇φ|

2
+

1
ε
F (φ)

)
dx, (2.8)

here F (φ) = φ2(1−φ)2/4, ε > 0 is the interfacial thickness between fluid and non-fluid regions. Then, the hyper surface
etween fluid and nonfluid regions is replaced by an interfacial layer with thickness proportional to the small parameter ε,
he design variable φ is allowed to have values in [0, 1] instead of only 0 or 1. From a constrained gradient flow of the free
nergy functional (2.8), we can derive the Allen–Cahn equation, which has been applied in various applications [37,44–51].
n order to ensure vanishing of the velocity outside the fluid domain, we add the penalty term

∫
Ω
α(φ)|u|

2/2dx to the
bjective function. Here, α(φ) : [0, 1] → [0, αε] is a smooth function of φ and αε is a large positive constant. When
(φ) = 0, one retains Stokes flow and when α(φ) = αε , one gets the Darcy equation that governs porous media flow.
his porous medium approach has been introduced for topology optimization in fluid flow by [39]. We choose α(φ) as
ollowing:

α(φ) = αεφ. (2.9)

Let Ω1 ⊂ Ω\Ω0 be a fixed solid area and we define a new function ψ(x) as

ψ(x) :=

{
1 if x ∈ Ω1,

0 if x ∈ Ω\Ω1.
(2.10)

To keep the design variable φ in the fixed solid area to be almost the same as those in the originally known value
, we use a fidelity term

∫
Ω
λ(φ − ψ)2/2dx. For this purpose, λ = λ if x ∈ Ω1; otherwise λ = 0. Here, λ is a positive

onstant. We use a penalization term to ensure the volume of solid A(φ) :=
∫
Ω
φ dx be V0 and arrive at an additional

penalization term β(A(φ)−V0)2/2. Here, β is a positive constant. Finally, our objective functional is proposed as follows:

min
(φ,u)

J (φ,u) =

∫
Ω

(µ
2

|∇u|
2
− u · f

)
dx + γ

∫
Ω

(
ε

2
|∇φ|

2
+

1
ε
F (φ)

)
dx +

∫
Ω

α(φ)
2

|u|
2dx

+

∫
Ω

λ

2
(φ − ψ)2dx +

β

2
(A(φ) − V0)2,

(2.11)

hich subjects to φ ∈ [0, 1] and

∇p − ∇ · (µ∇u) + α(φ)u = f in Ω, (2.12)
∇ · u = 0 in Ω, (2.13)

n · ∇p = 0 on ∂Ω, (2.14)
u = g on ∂Ω. (2.15)

It should be noted that by adding the term αεφ to Eq. (2.3), Eq. (2.12) is the interpolation between the steady-state
tokes equation in the fluid domain and Darcy flow through porous medium at the solid domain. Therefore αε should
ot be zero. In fact, we have weaken the condition of non-permeability through the solid region by introducing a diffuse
nterface approximation. Note that to ensure that the velocity vanishes outside the fluid region in the limit ϵ → 0, we
ave added an additional penalization term to the objective functional in Eq. (2.11). This porous medium approach has
een introduced for topology optimization in fluid flow in [38,39]. To ensure A(φ) to be V0, we have added a fidelity term
o Eq. (2.11). To keep the design variable φ in the fixed solid area to be almost the same as those in the originally known
alue ψ , we have used a fidelity term

∫
λ(φ − ψ)2/2dx.
Ω

3
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Now, we review the derivation of the proposed equation. By introducing an artificial time variable t , we aim to find a
stationary order parameter φ in the following gradient flow:

∂φ

∂t
= −

δJ
δφ
. (2.16)

Here, the chemical potential δJ/δφ is obtained via the variational derivative of the objective functional (2.11) with respect
to φ, i.e.,( δJ

δφ
, v

)
L2

=
d
dη

J(φ + ηv,u)
⏐⏐⏐⏐
η=0

=
γ

ε

∫
Ω

(
vF ′(φ) + ε2∇v · ∇φ

)
dx −

∫
Ω

v(λ̄(φ − ψ) +
α′(φ)
2

|u|
2
+ β (A(φ) − V0))dx

=
γ

ε

∫
Ω

(
F ′(φ) − ε2∆φ

)
vdx −

∫
Ω

v(λ̄(φ − ψ) +
α′(φ)
2

|u|
2
+ β (A(φ) − V0))dx + γ

∫
∂Ω

ε2
∂φ

∂n
vds

=

∫
Ω

(
γ

ε
F ′(φ) −

γ

ε
ε2∆φ − λ̄(φ − ψ) −

α′(φ)
2

|u|
2
− β (A(φ) − V0)

)
vdx,

(2.17)

where (, )L2 is L2 norm inner product and the Neumann boundary condition for φ, i.e., n · ∇φ = 0, is assumed. Thus,

δJ
δφ

=
γ

ε
F ′(φ) − γ ε∆φ + λ̄(φ − ψ) +

α′(φ)
2

|u|
2
+ β (A(φ) − V0) . (2.18)

Substituting Eq. (2.18) into Eq. (2.16) yields

∂φ

∂t
= −

γ

ε
F ′(φ) + γ ε∆φ − λ(φ − ψ) −

α′(φ)
2

|u|
2
− β(A(φ) − V0). (2.19)

In addition, the derivation of the proposed equation for the velocity u in a gradient flow is reviewed:( δJ
δu
,w
)
L2

=
d
dη

J(φ,u + ηw)
⏐⏐⏐⏐
η=0

=

∫
Ω

(µ∇u · w) dx −

∫
Ω

f · wdx +

∫
Ω

α(φ)u · wdx −

∫
Ω

p∇ · wdx −

∫
∂Ω

(u − g)wds −

∫
∂Ω

n · ∇pds

=

∫
Ω

(
α(φ)u + ∇p − ∇ · (µ∇u) − f

)
wdx,

(2.20)

here we have used Eqs. (2.13)–(2.15). Thus, we obtain

δJ
δu

= ∇p − ∇ · (µ∇u) + α(φ)u − f. (2.21)

Substituting Eq. (2.21) into Eq. (2.12) yields

δJ
δu

= ∇p − ∇ · (µ∇u) + α(φ)u − f = 0. (2.22)

By using the gradient flow method, we can accurately capture the trajectory leading to the solution of Eq. (2.19). Under
ppropriate assumptions, Garcke et al. proved the existence of minimizers to the classical phase field optimization problem
nd derived the first order optimality condition [52,53]. While the difficulty lies in establishing the general existence of
q. (2.19) because of the associated Lagrange multipliers. We will not consider the existence proof of Eq. (2.19) in this
ontext. There exist unique solutions u and p of Eqs. (2.12) and (2.13). The existence proof can be obtained by using the
heory of pseudo monotone operators and the uniqueness statement of stationary Stoke equations [54–56]. For details on
he existence proof of the unique solution u and how to include the pressure in the objective functional (Eq. (2.12)), we
efer the reader to [57]. Considering the state Eqs. (2.12) and (2.19), we find the following solvability result.

heorem 2.1. The solutions u, p, and φ of Eqs. (2.12), (2.13), and (2.19) possess the property that the total energy J(φ,u)
ecreases with time, i.e., dJ/dt ≤ 0.

roof.
dJ
dt

=

∫
Ω

(
µ∇u · ∇ut − f · ut

)
dx + γ

∫
Ω

(1
ε
F ′(φ) · φt − ε∆φ · φt

)
dx

+

∫ (
α(φ)u · ut +

1
α′(φ)|u|

2
· φt

)
dx +

∫
λ(φ − ψ) · φtdx +

∫
β(A(φ) − V0) · φtdx.

(2.23)
Ω 2 Ω Ω

4
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By taking the inner product of Eq. (2.12) with ut , we obtain∫
Ω

(
∇p · ut −

(
∇ · (µ∇u)

)
· ut + α(φ)u · ut

)
dx =

∫
Ω

f · utdx, (2.24)∫
Ω

µ∇u · ∇ut + α(φ)u · ut − f · utdx =

∫
Ω

−∇p · utdx =

∫
Ω

p∇ · utdx = 0. (2.25)

By taking the inner product of Eq. (2.19) with −φt , we have∫
Ω

φt · (−φt )dx =

∫
Ω

(γ
ε
F ′(φ) · φt − γ ε∆φ + λ(φ − ψ) +

α′(φ)
2

|u|
2
+ β(A(φ) − V0)

)
· φtdx. (2.26)

Combining Eqs. (2.25) and (2.26), we get

dJ
dt

= −

∫
Ω

φ2
t dx ≤ 0. □ (2.27)

. Numerical schemes

Let us denote some notations at the beginning. We focus on describing this idea in two-dimensional space. The
xtension to three-dimensional domains is straightforward. For simplicity, the design domain for our scheme is set as
rectangular domain Ω = [0, Lx] × [0, Ly] and h = Lx/Nx = Ly/Ny is defined as uniform mesh size, where Nx and Ny
re two positive even integers and N = NxNy. The staggered marker-and-cell mesh is used. In this mesh, the pressure
and phase fields φ are stored at the cell centers, and the velocities u(u, v) are saved at the cell edges. Let φn

ij be an
pproximation to φ(xi, yj, n∆t), where xi = (i−0.5)h, yj = (j−0.5)h, and ∆t is the time step. The cell vertices are located

at (xi+ 1
2
, yj+ 1

2
) = (ih, jh). Some discrete operators are defined as follows.

∇dφi,j =
(
Dxφi+ 1

2 ,j
,Dyφi,j+ 1

2

)
, Dxφi+ 1

2 ,j
=
φi+1,j − φi,j

h
, Dyφi,j+ 1

2
=
φi,j+1 − φi,j

h
,

∆dφi,j =
φi−1,j + φi+1,j + φi,j−1 + φi,j+1 − 4φi,j

h2 ,

(φ,ψ)d = h2
Nx∑
i=1

Ny∑
j=1

φi,jψi,j, Ad(φ) = h2
Nx∑
i=1

Ny∑
j=1

φi,j = (φ, 1)d.

(∇dφ,∇dψ)d = h2
Nx∑
i=1

Ny∑
j=1

(
Dxφi+ 1

2 ,j
Dxψi+ 1

2 ,j
+ Dyφi,j+ 1

2
Dyψi,j+ 1

2

)
.

∥φ∥
2
d = (φ, φ)d, ∥∇dφ∥

2
d = (∇dφ,∇dφ)d.

Here, 1 is an Nx-by-Ny matrix of ones. One of the desirable properties for the discretized system to have is to maintain
its own energy dissipation law that is consistent with the energy law obeyed by the continuous system. Practically, this
is an indication for a good approximation to the differential dissipative system [58]. In the following, the first-order and
second-order energy stable schemes will be devised for Eqs. (2.12), (2.13), and (2.19). In the first-order scheme, only three
decoupled elliptic equations with constant coefficients are solved at each time step, which makes it easy to implement.
The second-order scheme is a coupling method but achieves second-order accuracy in time and space. We will show that
the proposed two discrete schemes satisfy semi-discrete energy-dissipation law and are therefore unconditionally energy
stable.

3.1. The first-order scheme

The first-order linearly stabilized splitting schemes for Eqs. (2.12), (2.13), and (2.19) are given as follows:

φn+1
− φn

∆t
= −

γ

ε
F ′(φn) −

γ ξ

2ε
(φn+1

− φn) + γ ε∆dφ
n+1

−
α′(φn+1)

2
|un

|
2
− λ(φn+1

−ψ) − β
(
Ad(φn+1) − V0

)
, (3.1)

∇dpn+1
− ∇d · (µ∇dun+1) + α(φn+1)un+1

= f, (3.2)

∇ · un+1
= 0, (3.3)
d

5
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2ε (φ
n+1

− φn) is introduced in Eq. (3.1). Here, ξ is a positive parameter. Note that the system
(3.1)–(3.3) has the first order accuracy in time and second order accuracy in space. The term Ad(φn+1) in Eq. (3.1) cannot
be solved because of the unknown φn+1 in the nth time step. By taking the inner product of Eq. (3.1) with 1, we obtain

Ad(φn+1) =

( 1
∆t +

γ ξ

2ε )Ad(φn) + Nβh2V0 +
∑Nx

i=1
∑Ny

j=1

(
λψ −

γ

ε
F ′(φn) −

α′(φn+1)
2 |un

|
2
)

1
∆t +

γ ξ

2ε + λ+ βNh2
. (3.4)

ere, α(φ) is a linear function of φ (Eq. (2.9)), then α′(φn+1) = αε . Therefore, we can replace the original definition of
d(φn+1) by Eq. (3.4). Next, we describe the overall procedure for the numerical solution from n to n+ 1 time step. With
given divergence-free velocity field un and an order parameter φn, we want to find un+1 and φn+1:
Step 1. Compute A(φn+1) by Eq. (3.4).
Step 2. Solve Eq. (3.1) by using the preconditioning conjugate gradient method to get φn+1 from un and φn.
Step 3. Solve the Stokes Eqs. (3.2) and (3.3) to get un+1 and pn+1 from un and pn.
By taking the divergence on both sides of Eq. (3.2) and using the incompressible condition Eq. (3.3), we obtain

∆dpn+1
+ ∇d · (α(φn+1)un+1) = ∇d · f. (3.5)

hen, Eqs. (3.2) and (3.5) are transformed into a linear system of un+1 and pn+1, which can be solved with a preconditioned
onjugate gradient method. This completes the process (Step 1–Step 3) by which the variables un+1, pn+1, and φn+1 are
calculated. Because Eq. (3.1) is linear equation of φn+1 and Eqs. (3.2) and (3.5) are a linear system of un+1 and pn+1,
existence follows from uniqueness for our first-order scheme. As in the semi-discrete case, the discrete total energy is
defined as

J
(
φn+1,un+1)

=
µ

2

(
∇dun+1,∇dun+1

)
d
−

(
un+1, f

)
d
+
γ

ε

(
F (φn+1), 1

)
d
+
γ ε

2

(
∇dφ

n+1,∇dφ
n+1
)
d

+
1
2

(
α(φn+1)un+1,un+1

)
d
+
λ

2

(
φn+1

− ψ, φn+1
− ψ

)
d
+
β

2

(
Ad(φn+1) − V0, Ad(φn+1) − V0

)
d
.

(3.6)

Remark 1. In this work, we restrict our attention to the order parameter φ which is bounded such that φ ≤ M. It is well
known that the original Allen–Cahn equation satisfies the maximum principle [59–63]. Eq. (2.19), which is a modified
Allen–Cahn equation, may satisfy the maximum principle, because this condition can be satisfied by many physically
relevant potentials by restricting the growth of F (φ) to be quadratic for φ ≥ M. It is very difficult to analytically prove
that the solution for Eq. (2.19) is bounded because F (φ) exhibits quartic growth at infinity and the velocity u is coupled to
the order parameter φ. Based on our numerical experiment, we can find that the solution for Eq. (2.19) with the original
double-well potential is bounded if the maximum norm of initial condition φ0

∈ [0, 1] is bounded. Therefore, M may be
non-significantly larger than 1.

Now, we will prove the unconditional energy stability J(φn+1,un+1) ≤ J(φn,un) under the condition ξ ≥ F ′′(M).

Lemma 3.1. Under the condition that ξ ≥ F ′′(M), the solutions (φn+1, φn, un) of the scheme (3.1) satisfy

J(φn+1,un) ≤ J(φn,un).

Proof. By taking inner product of Eq. (3.1) with −(φn+1
− φn), we get

−

(φn+1
− φn

∆t
, φn+1

− φn
)
d

= −
1
∆t

∥φn+1
− φn

∥
2
d. (3.7)(γ ξ

2ε
(φn+1

− φn), φn+1
− φn

)
d

=
γ ξ

2ε
∥φn+1

− φn
∥
2
d. (3.8)

−(γ ε∆dφ
n+1, φn+1

− φn)d = γ ε

(
∇dφ

n+1,∇dφ
n+1

− ∇dφ
n
)
d

=
γ ε

2

(
∥∇dφ

n+1
∥
2
d − ∥∇dφ

n
∥
2
d + ∥∇dφ

n+1
− ∇dφ

n
∥
2
d

)
.

(3.9)

(
λ(φn+1

− ψ), φn+1
− φn

)
d

=
λ

2

(
∥φn+1

− ψ∥
2
d − ∥φn

− ψ∥
2
d + ∥φn+1

− φn
∥
2
d

)
. (3.10)

β

(
Ad(φn+1) − V0, φ

n+1
− φn

)
d

=
β

2

((
Ad(φn+1) − V0

)2
−
(
Ad(φn) − V0

)2
+
(
Ad(φn+1) − Ad(φn)

)2)
. (3.11)

For the term γ

ε

(
F ′(φn), φn+1

− φn
)
d
, we get

γ

ε

(
F ′(φn), φn+1

− φn
)
d

=
γ

ε

(
F (φn+1) − F (φn), 1

)
d
−

(γ F ′′(ζ n+1)
2ε

(φn+1
− φn), φn+1

− φn
)
d

=
γ (

F (φn+1) − F (φn), 1
)

−
γ F ′′(ζ̄ )

∥φn+1
− φn

∥
2.

(3.12)
ε d 2ε d

6
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Here, the function ζ n+1 exists because of the used Taylor expansion. Furthermore, ζ̄ ∈ [φn, φn+1
] exists because of the

mean value theorem of integrals. By using the definition of α(φ) in Eq. (2.9), we obtain

1
2

(
α′(φn+1)|un

|
2
, φn+1

− φn
)
d

=
1
2

(
(α(φn+1) − α(φn))un,un

)
d

=
1
2

(
α(φn+1)u,u

)
d
−

(
α(φn)un,un

)
d
. (3.13)

By combining the above relations, we have

−
1
∆t

∥φn+1
− φn

∥
2
d =

γ

ε

(
F (φn+1) − F (φn), 1

)
d
−
γ F ′′(ζ̄ )

2ε
∥φn+1

− φn
∥
2
d +

γ ξ

2ε
∥φn+1

− φn
∥
2
d

+
γ ε

2

(
∥∇dφ

n+1
∥
2
d − ∥∇dφ

n
∥
2
d + ∥∇dφ

n+1
− ∇dφ

n
∥
2
d

)
+

∥un
∥
2
d

2

(
α(φn+1) − α(φn), 1

)
d

+
λ

2

(
∥φn+1

− ψ∥
2
d − ∥φn

− ψ∥
2
d + ∥φn+1

− φn
∥
2
d

)
+
β

2

((
Ad(φn+1) − V0

)2
−
(
Ad(φn) − V0

)2
+
(
Ad(φn+1) − Ad(φn)

)2)
.

(3.14)

Here, J(φn+1,un) − J(φn,un) can be expressed as

J(φn+1,un) − J(φn,un)

=
γ

ε

(
F (φn+1) − F (φn), 1

)
d
+
γ ε

2

(
∥∇dφ

n+1
∥
2
d − ∥∇dφ

n
∥
2
d

)
+

∥un
∥
2
d

2

(
α(φn+1) − α(φn), 1

)
d

+
λ

2

(
∥φn+1

− ψ∥
2
d − ∥φn

− ψ∥
2
d

)
+
β

2

((
Ad(φn+1) − V0

)2
−
(
Ad(φn) − V0

)2)
.

(3.15)

By combining Eqs. (3.14) and (3.15), we get

J(φn+1,un) − J(φn,un) = −
1
∆t

∥φn+1
− φn

∥
2
d + γ

(F ′′(ζ̄ )
2ε

−
ξ

2ε

)
∥φn+1

− φn
∥
2
d

−
γ ε

2
∥∇dφ

n+1
− ∇dφ

n
∥
2
d −

λ

2
∥φn+1

− φn
∥
2
d −

β

2

(
Ad(φn+1) − Ad(φn)

)2
≤ 0.

(3.16)

Because F ′′(φ) = 3φ2
− 3φ + 1/2 is a quadratic function and φ ≤ M, we have F ′′(M) ≥ F ′′(ζ̄ ). Therefore, under the

condition ξ ≥ F ′′(M), we have J(φn+1,un) − J(φn,un) ≤ 0. Thus, the proof is completed. □

Lemma 3.2. The solutions (φn+1, un+1, un) of the scheme (3.2) and (3.3) satisfy

J(φn+1,un+1) ≤ J(φn+1,un)

Proof. By taking the inner product of Eq. (3.2) with un+1
− un, we obtain(

∇dpn+1,un+1
− un

)
d
+

(
µ∇dun+1,∇dun+1

− ∇dun
)
d
+

(
α(φn+1)un+1,un+1

− un
)
d

=

(
f,un+1

− un
)
d
. (3.17)

Hence, we have

J(φn+1,un+1) − J(φn+1,un)

=
µ

2

(
∥∇dun+1

∥
2
d − ∥∇dun

∥
2
d

)
+

1
2

(
α(φn+1), |un+1

|
2
− |un

|
2
)
d
−

(
(un+1, f)d − (un, f)d

)
= −

µ

2
∥∇dun+1

− ∇dun
∥
2
d −

1
2

(
α(φn+1), |un+1

− un
|
2
)
d
−

(
∇dpn+1,un+1

− un
)
d

= −
µ

2
∥∇dun+1

− ∇dun
∥
2
d −

1
2
∥

√
α(φn+1)(un+1

− un)∥2
d +

(
pn+1,∇d · un+1

)
d
−

(
pn+1,∇d · un

)
d
.

(3.18)

Because of ∇d · u = 0, we have J(φn+1,un+1) − J(φn+1,un) ≤ 0. Thus, the proof is completed. □

Theorem 3.1. Under the condition ξ ≥ F ′′(M), the proposed scheme (3.1)–(3.3) is unconditionally energy stable, i.e.,

J(φn+1,un+1) ≤ J(φn,un).

Proof. From Lemmas 3.1 and 3.2, we have

J(φn+1,un+1) ≤ J(φn+1,un) ≤ J(φn,un),

which implies our first-order scheme is indeed unconditionally energy stable. □
7
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f

w

T

H

3.2. The second-order scheme

In order to achieve second-order accuracy in time and space, we discretize Eqs. (2.12), (2.13), and (2.19) by the
ollowing Crank–Nicolson type scheme

φn+1
− φn

∆t
= −

γ

ε

(
F

′

(φ̃n+ 1
2 ) + ξφn+ 1

2 − ξ φ̃n+ 1
2

)
+ γ ε∆dφ

n+ 1
2 − λ(φn+ 1

2 − ψ)

−
α

′

(φn) + α
′

(φn+1)
4

|un
|
2
+ |un+1

|
2

2
− β

(Ad(φn) + Ad(φn+1)
2

− V0

)
, (3.19)

∇dpn+
1
2 − ∇d · (µ∇dun+ 1

2 ) +
α(φn) + α(φn+1)

2
un+ 1

2 = f, (3.20)

∇d · un+1
= 0, (3.21)

here

φn+ 1
2 =

φn+1
+ φn

2
, φ̃n+ 1

2 =
3φn

− φn−1

2
, un+ 1

2 =
un+1

+ un

2
. (3.22)

he outline of the main procedure of Eqs. (3.19)–(3.21) in one time step is as follows:
Step 1. Solve Eqs. (3.19)–(3.21) to get φn+1 and un+1 from φn and un.
First, by taking the divergence operator to both sides of Eq. (3.20), we obtain

∆dpn+
1
2 +

1
4
∇d · ((α(φn) + α(φn+1))(un

+ un+1)) = ∇d · f. (3.23)

Second, a Jacobi-type iteration method is used to solve Eqs. (3.21), (3.20), and (3.23):

φn+1,m+1
− φn

∆t
= −

γ

ε

(
F

′

(φ̃n+ 1
2 ) +

ξ

2
(φn+1,m+1

+ φn) − ξ φ̃n+ 1
2

)
+ γ ε∆d(φn+1,m+1

+ φn)

− λ

(φn+1,m+1
+ φn

2
− ψ

)
−
α

′

(φn) + α
′

(φn+1)
4

|un
|
2
+ |un+1,m

|
2

2
− β

(Ad(φn) + Ad(φn+1,m+1)
2

− V0

)
, (3.24)

Ad(φn+1,m+1) = (φn+1,m+1, 1)d, (3.25)

∆dpn+
1
2 +

1
4
∇(α(φn) + α(φn+1,m+1)) · (un

+ un+1,m) = ∇d · f, (3.26)

∇dpn+
1
2 −

1
2
∇d · (µ∇d(un

+ un+1,m+1)) +
1
4
(α(φn) + α(φn+1,m+1))(un

+ un+1,m+1) = f. (3.27)

Beginning with φn+1,0
= 2φn

−φn−1 and un+1,0
= 2un

−un−1, we solve Eqs. (3.24)–(3.27) by using the preconditioning
conjugate gradient method. The computation is performed until the error is smaller than a given tolerance as

∥φn+1,m+1
− φn+1,m

∥
2
d + ∥un+1,m+1

− un+1,m
∥
2
d < tol.

Then, we will set φn+1
= φn+1,m+1 and un+1

= un+1,m+1. The residual error converges rather quickly to a tolerance
tol = 1e−5 in 3–5 iterations. Following Step 1–Step 2, one iteration of computational simulation is completed. The
existence of a unique solution to Eqs. (3.24)–(3.27) can be guaranteed because Eq. (3.24) is a linear system of φn+1,m+1

and Eqs. (3.26)–(3.27) is a linear system of un+1,m+1 and pn+
1
2 . This shows existence and uniqueness of (φn+1, un+1, pn+

1
2 )

to Eqs. (3.19)–(3.21). Before we prove the stability of our method, we define the discrete pseudo energy as

J̃
(
φn+1, φn,un+1)

= J(φn+1,un+1) +
ξ − F ′′(σ n,n+1)

4
∥φn+1

− φn
∥
2
d. (3.28)

ere, σ n,n+1 satisfies the following equation(
F ′

(
φ̃n+ 1

2

)
, φn+1

− φn
)
d

=
(
F
(
φn+1)

− F
(
φn) , 1)d

−
F ′′(σ n,n+1)

4

(
∥φn+1

− φn
∥
2
d − ∥φn

− φn−1
∥
2
d + ∥φn+1

− 2φn
+ φn−1

∥
2
d

)
.

(3.29)

Theorem 3.2. Under the condition that ξ ≥ F ′′(M), the solutions (φn+1, φn, un+1, un) of the scheme (3.19)–(3.21) satisfy

J̃
(
φn+1, φn,un+1)

≤ J̃
(
φn, φn−1,un) .

Proof. By taking the inner product of Eq. (3.20) with un+1
− un, we obtain

1
2

(
∇dpn + ∇dpn+1,un+1

− un
)
d
+
µ

2

(
∇dun

+ ∇dun+1,∇dun+1
− ∇dun

)
d

+
1(
α(φn) + α(φn+1), |un+1

|
2
− |un

|
2
)

−

(
f,un+1

− un
)

= 0,
(3.30)
4 d d

8
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a

H
t

µ

2

(
∥∇dun+1

∥
2
d − ∥∇dun

∥
2
d

)
+

1
2

(
α(φn+1), |un+1

|
2
)
d
−

1
2

(
α(φn), |un

|
2
)
d
−

(
un+1, f

)
d
−

(
un, f

)
d

=
1
2

(
pn + pn+1,∇d · un+1

− ∇d · un
)
d
+

1
4

(
α(φn+1) − α(φn), |un+1

|
2
+ |un

|
2
)
d

=

(
α(φn+1) − α(φn),

|un
|
2
+ |un+1

|
2

4

)
d

.

(3.31)

Taking inner product of Eq. (3.19) with −(φn+1
− φn), we obtain

−
1
∆t

∥φn+1
− φn

∥
2
d =

γ

ε

(
F ′(φ̃n+ 1

2 ), φn+1
− φn

)
d
+
ξγ

ε

(
φn+ 1

2 − φ̃n+ 1
2 , φn+1

− φn
)
d

− εγ

(
∆dφ

n+ 1
2 , φn+1

− φn
)
d
+

(α′(φn) + α′(φn+1)
4

|un
|
2
+ |un+1

|
2

2
, φn+1

− φn
)
d

+ λ

(
φn+ 1

2 − ψ, φn+1
− φn

)
d
+
β

2

(
Ad(φn+1) + Ad(φn) − 2V0, φ

n+1
− φn

)
d
.

(3.32)

Each term of Eq. (3.32) can be expressed as follows:

−εγ

(
∆dφ

n+ 1
2 , φn+1

− φn
)
d

=
γ ε

2
∥∇dφ

n+1
∥
2
d −

γ ε

2
∥∇dφ

n
∥
2
d, (3.33)

λ

(
φn+ 1

2 − ψ, φn+1
− φn

)
d

=
λ

2
∥φn+1

− ψ∥
2
d −

λ

2
∥φn

− ψ∥
2
d, (3.34)

β

(Ad(φn+1) + Ad(φn)
2

− V0, φ
n+1

− φn
)
d

=
β

2
(Ad(φn+1) + Ad(φn) − 2V0)

(
φn+1

− φn, 1
)
d

=
β

2

(
Ad(φn+1) − V0 + Ad(φn) − V0

)(
Ad(φn+1) − V0 − (Ad(φn) − V0)

)
=
β

2

(
Ad
(
φn+1)

− V0

)2
−
β

2

(
Ad
(
φn)

− V0

)2
,

ξγ

ε

(
φn+ 1

2 − φ̃n+ 1
2 , φn+1

− φn
)
d

=
ξγ

4ε

(
∥φn+1

− φn
∥
2
d − ∥φn

− φn−1
∥
2
d + ∥φn+1

− 2φn
+ φn−1

∥
2
d

)
. (3.35)

Here, we can pull Ad(φn+1) and Ad(φn) out of the discretized scalar product, because these two terms only depend on
the temporal discretization. Taylor expansion formula and mean value theorem of integrals are applied to obtain the
expression of the first right term in Eq. (3.32):(

F
(
φn+1) , 1)

d
−

(
F
(
φ̃n+ 1

2

)
, 1
)
d

=

(
F ′

(
φ̃n+ 1

2

)
, φn+1

− φ̃n+ 1
2

)
d
+

(F ′′(ζ n+1
1 )
2

(φn+1
− φ̃n+ 1

2 ), φn+1
− φ̃n+ 1

2

)
d

=

(
F ′

(
φ̃n+ 1

2

)
, φn+1

− φ̃n+ 1
2

)
d
+

F ′′

(
ζ̂ n+1
1

)
2

φn+1
− φ̃n+ 1

2

2
d

(3.36)

nd (
F
(
φn) , 1)

d
−

(
F
(
φ̃n+ 1

2

)
, 1
)
d

=

(
F ′

(
φ̃n+ 1

2

)
, φn

− φ̃n+ 1
2

)
d
+

(F ′′(ζ n2 )
2

(φn
− φ̃n+ 1

2 ), φn
− φ̃n+ 1

2

)
d

=

(
F ′

(
φ̃n+ 1

2

)
, φn

− φ̃n+ 1
2

)
d
+

F ′′

(
ζ̂ n2

)
2

φn
− φ̃n+ 1

2

2
d
.

(3.37)

ere, two functions ζ n+1
1 , ζ n2 and two constants ζ̂ n+1

2 , ζ̂ n2 exist because of mean value theorem of integrals. Furthermore,
here exists σ n+1,n

∈ [ζ̂ n2 , ζ̂
n+1
1 ] which satisfies the following equation(

F ′

(
φ̃n+ 1

2

)
, φn+1

− φn
)
d

=
(
F
(
φn+1)

− F
(
φn) , 1) +

F ′′(σ n+1,n)
(∥φn

− φn−1
∥
2
− ∥φn+1

− φn
∥
2
− ∥φn+1

− 2φn
+ φn−1

∥
2).

(3.38)
d 4 d d d

9
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T
{

P

Because α(φ) = αεφ, we have the following equation(
α′(φn) + α′(φn+1)

4
|un

|
2
+ |un+1

|
2

2
, φn+1

− φn

)
d

=

(
α′(φn) + α′(φn+1)

2

(
φn+1

− φn) , |un
|
2
+ |un+1

|
2

4

)
d

=

(
α(φn+1) − α(φn),

|un
|
2
+ |un+1

|
2

4

)
d

.

(3.39)

Combining Eqs. (3.33)–(3.39), we have
γ

ε

(
F
(
φn+1)

− F
(
φn) , 1)d +

ξγ

4ε

(
∥φn+1

− φn
∥
2
d − ∥φn

− φn−1
∥
2
d + ∥φn+1

− 2φn
+ φn−1

∥
2
d

)
+
γ F ′′(σ n+1,n)

4ε

(
−∥φn+1

− φn
∥
2
d + ∥φn

− φn−1
∥
2
d − ∥φn+1

− 2φn
+ φn−1

∥
2
d

)
−
β

2

(
Ad
(
φn)

− V0

)2
+
γ ε

2
∥∇dφ

n+1
∥
2
d −

γ ε

2
∥∇dφ

n
∥
2
d +

λ

2
∥φn+1

− ψ∥
2
d −

λ

2
∥φn

− ψ∥
2
d +

β

2

(
Ad
(
φn+1)

− V0

)2
= −

(
α(φn+1) − α(φn),

|un
|
2
+ |un+1

|
2

4

)
d

−
1
∆t

∥φn+1
− φn

∥
2
d.

(3.40)

Then, by combining Eqs. (3.31) and (3.40), we can obtain

J̃
(
φn+1, φn,un+1)

− J̃
(
φn, φn−1,un)

= −
1
∆t

∥φn+1
− φn

∥
2
d −

ξ − F ′′(σ n+1,n)
4ε

γ
φn+1

− 2φn
+ φn−1

2
d ≤ 0.

Here, the condition ξ ≥ F ′′(M) is used. The proof is completed. □

Lemma 3.3. If ξ ≥ F ′′(M), then J
(
φn+1,un+1

)
≤ J̃

(
φn+1, φn,un+1

)
.

Proof. By Eq. (3.28), we can have

J
(
φn+1,un+1)

− J̃
(
φn+1, φn,un+1)

= −
ξ − F ′′(σ n+1,n)

4
∥φn+1

− φn
∥
2
d ≤ 0. □ (3.41)

heorem 3.3. Suppose that {φn,un
}
N
n=1 are a sequence of solution pairs of the scheme (3.19)–(3.21) with the starting values

φ0,u0
} and {φ−1,u−1

}, where φ0
= φ−1 and u0

= u−1. Then, we have

J(φn+1,un+1) ≤ J̃
(
φn+1, φn,un+1)

≤ J(φ0,u0).

roof. By Theorem 3.2, Lemma 3.3 and φ0
= φ−1, a chain of inequalities can be obtained

J(φn+1,un+1) ≤ J̃
(
φn+1, φn,un+1)

≤ J̃
(
φn, φn−1,un) . . . ≤ J̃

(
φ0, φ−1,u0)

= J(φ0,u0). (3.42)

Therefore, the discrete version of the original energy is bounded and the discrete pseudo total energy is non-increasing.
Therefore, our proposed method (3.19)–(3.21) is unconditionally pseudo energy stable. □

Remark 2. It should be noted that the total energy dissipation has been proved in Theorems 3.1 and 3.3. By using the
first-order numerical scheme in Section 3.1, the convergence of original optimization problem can be directly proved
because we use a gradient descent flow to obtain the governing equation and have proved that J(φn+1,un+1) ≤ J(φn,un).
However, for the second-order scheme, the pseudo energy is proved to be non-increased and the loss function of the
original optimization problem is bounded, i.e. J(φn+1,un+1) ≤ J̃

(
φn+1, φn,un+1

)
. Despite it being difficult to exactly prove

that the original optimization problem (Eqs. (2.11)–(2.15)) follows a energy dissipation law or not, the results of the
numerical tests presented in Section 4 indicate that the original energy J(φ,u) is non-increasing.

4. Numerical results

In this section, extensive numerical tests are performed to validate the accuracy and efficiency of the proposed schemes.
The domain boundary consists of ∂Ω = ∂Ωwall

⋃
∂Ωin

⋃
∂Ωout , where ∂Ωwall, ∂Ωin, and ∂Ωout are the wall, inlet, and

outlet boundaries, respectively. Here, the velocities on the boundary are defined as

u|∂Ω =

{u|∂Ωwall is zero,
u|∂Ωin is Dirichlet boundary with a parabolic profile,
u|∂Ωout is Dirichlet boundary with a parabolic profile.

We choose the Dirichlet boundary conditions with a parabolic profile and its mean inflow velocity ḡ in a rectangular
domainΩ = [0, 1]×[0, 1]. The boundary conditions have the same form on both inflow and outflow boundaries and lead
10
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Table 1
Errors and convergence results with various mesh grids for the first-order scheme. Here ∆t = 0.001h2

is fixed.
h 1/32 − 1/64 1/64 − 1/128 1/128 − 1/256

L2-error of u 8.331E−4 2.080E−4 5.201E−5
Rate 2.00 2.01
L2-error of v 7.968E−4 1.991E−4 4.665E−5
Rate 1.97 1.99
L2-error of p 5.864E−4 1.466E−4 3.665E−5
Rate 1.98 2.02
L2-error of φ 1.233E−4 3.056E−5 7.665E−6
Rate 2.01 2.00

Table 2
Errors and convergence results with various mesh grids for the second-order scheme. Here ∆t = 0.001h
is fixed.
h 1/32 − 1/64 1/64 − 1/128 1/128 − 1/256

L2-error of u 8.273E−4 2.058E−4 4.975E−5
Rate 1.99 1.90
L2-error of v 7.950E−4 1.988E−4 4.961E−5
Rate 1.96 2.02
L2-error of p 5.651E−4 1.412E−4 3.531E−5
Rate 1.95 1.97
L2-error of φ 1.199E−4 2.991E−5 7.627E−6
Rate 2.00 1.97

to a divergence free solution. Unless otherwise specified, we use the following parameter values: h = 1/256, ∆t = 0.1h,
=

√
2h/ tanh−1(0.9), αϵ = 200, f = 0, i.e., no fluid body forces. In our proof, the stabilizing parameter ξ is chosen to

e ξ ≥ F ′′(M) = 3M2
− 3M + 1/2 to make the pseudo energy strictly non-increasing. However, in practical simulation,

may be chosen as ξ = 1/2 for the initial condition φ0
∈ [0, 1] because the absolute value of ζ̄ may be much smaller

than M. Unless otherwise specified, we will use ξ = 1/2 throughout this paper. Note that we use a conjugate gradient
method preconditioned by the multigrid method to solve the system (3.1)–(3.3) and (3.24)–(3.27).

4.1. Convergence test

In this test, we verify the time and space convergence rates of the proposed first-order and second-order accurate
schemes. We choose the initial conditions as φ(x, y, 0) = 0.4 + 0.1 (sin(2πx) + cos(2πy)), u(x, y, 0) = 0.5(x − 0.5)2,
v(x, y, 0) = 0.5(y− 0.5)2, and p = 0.5(sin(2πx)+ cos(2πy)). To obtain the convergence rate for spatial discretization, we
perform a number of simulations with increasing finer grids 32 × 32, 64 × 64, 128 × 128, 256 × 256 on the computational
omain Ω = (0, 1) × (0, 1). We run the simulations up to the time T = 4E−6 with ∆t = 0.001h2 and ∆t = 0.001h
or the first- and second-order schemes, respectively. The other parameters are chosen as β = 200 and the tolerance
rror as 1E−15. Because there is no exact solution, we define the Cauchy error of a grid as the difference between

hat grid and the average of the fine solution neighboring it as following: e
φ(h/ h

2 )
i,j = φh

i,j −
φ
h/2
2i−1,2j−1+φ

h/2
2i−1,2j+φ

h/2
2i,2j−1+φ

h/2
2i,2j

4 .
he rate of convergence can be defined as the ratio of successive error: log2(∥eh∥2/∥e

h
2 ∥2), where ∥e∥2 is the L2-norm

efined as ∥e∥2 =

√
Σ

Nx
i=1Σ

Ny
j=1e

2
i,j/(NxNy). The error between the numerical solution and the reference solution satisfies

∥e∥2 = O(∆tm+hn) in analysis. If we set ∆t = chn/m, then ∥e∥2 will approach to O(hn). Here, c is a constant. Then, the rate
log2(∥eh∥2/∥e h

2
∥2) will become n. The errors and convergence rates are presented in Tables 1–2. The results suggest that

our schemes Eqs. (3.1)–(3.3) and (3.19)–(3.21) are both indeed second-order accurate in space. Observing these results,
we can see that the convergence results are similar, when we use the time step 0.001h2 and 0.001h for the first-order
and the second-order schemes, respectively. However, the used time step in second-order scheme is much larger than
the one used in the first-order scheme.

To obtain the convergence rate for temporal discretization, we fix h = 1/128 and choose several time steps ∆t =

.001h, 0.002h, 0.004h, and 0.008h. We run the simulations up to the time T = 4E−6 for the first- and second-order
chemes. The l2-norm error of a grid to be e

φ(t/ t
2 )

i,j = φt
i,j −φ

t
2
i,j . The errors and convergence rates are presented in Tables 3–

. The results suggest that our schemes Eqs. (3.1)–(3.3) and (3.19)–(3.21) are first-order and second-order accurate in
ime, respectively.

.2. Topology optimization of diffuser in 2D

In this test, we impose the inflow/outflow velocity at the left/right boundary of a diffuser as shown in Fig. 1. We set
¯ = 1 and ḡ = 3 for the inflow and outflow velocities, respectively. The other parameters used are β = 2000, V = 0.55,
0

11
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Table 3
Errors and convergence results with various time steps for the first-order scheme. Here h = 1/128 is
fixed.
∆t 0.008h − 0.004h 0.004h − 0.002h 0.002h − 0.001h

L2-error of u 5.693E−5 2.847E−5 1.422E−5
Rate 1.00 0.98
L2-error of v 5.836E−5 2.918E−5 1.456E−5
Rate 0.95 0.97
L2-error of p 2.656E−5 1.327E−5 6.636E−6
Rate 1.01 0.99
L2-error of φ 7.912E−6 3.742E−6 1.835E−6
Rate 1.08 1.02

Table 4
Errors and convergence results with various time steps for the second-order scheme. Here h = 1/128
is fixed.
∆t 0.008h − 0.004h 0.004h − 0.002h 0.002h − 0.001h

L2-error of u 5.681E−5 2.839E−5 1.411E−5
Rate 1.01 1.02
L2-error of v 5.623E−5 2.811E−5 1.404E−5
Rate 0.99 1.01
L2-error of p 2.546E−5 1.271E−5 6.365E−6
Rate 0.98 0.96
L2-error of φ 7.899E−6 3.729E−6 1.716E−6
Rate 1.06 1.02

Fig. 1. Schematic illustration of inflow and outflow.

nd γ = 10. The initial distribution of fluid is restricted in the middle of the design domain. Fig. 2 shows the time evolution
f topology optimization with the first-order (top row) and second-order (bottom row) schemes. The computational times
re drawn below each figure. Here, ∆t = 0.1h is used. We can find that the interface of the fluid region gradually becomes

smooth. The inlet diameter becomes wider while the outlet diameter becomes narrower. Furthermore, the second-order
scheme (3.19)–(3.21) generates the accurate solutions quicker than the first-order scheme (3.1)–(3.3) does as shown in
Fig. 2 because the result obtained by using the first-order scheme at time t = 3 is similar with that obtained by using
he second-order scheme at time t = 1.

To investigate the dependence of the computational process on ξ , we use two different ξ = 1/4 and ξ = 1. The other
parameters and initial conditions are used as same as those in the above test. Fig. 3 shows the optimal designs obtained
at time t = 3. (a) and (b) are the results with first-order scheme. (c) and (d) are the results with second-order scheme.
From these results, we can observe that the optimal designs obtained by using ξ = 1/4 are in good agreement with
these results obtained by using ξ = 1. Therefore unless otherwise specified, we will use ξ = 1/2 and only adopt the
second-order scheme to perform next several experiments.

4.3. Stability of our proposed schemes

Energy stability has been widely investigated for numerical schemes of classic PDE-based phase field models. To
demonstrate the stability of our proposed schemes (3.1)–(3.3) and (3.19)–(3.21), we perform two numerical experiments
with large time steps ∆t = 100. The calculations are run up to final time T = 15 000. The results are shown in Fig. 4. We
can see that the total energies of our first- and second-order schemes are non-increasing, which implies that our schemes
are unconditionally energy stable.
12
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a

Fig. 2. The time evolution of topology optimization with the first-order (top row) and second-order (bottom row) schemes. The computational times
re drawn below each figure. Here, ∆t = 0.1h is used.

Fig. 3. The optimal designs obtained with different ξ at time t = 3. (a) and (b) are the results with first-order scheme. (c) and (d) are the results
with second-order scheme.

4.4. Comparison with the decoupled numerical scheme

The decoupled scheme is a simple and efficient method for the fluid topology optimization. Our first-order scheme is
a decoupled scheme, however, the second-order scheme is a coupled one. We can design a decoupled Crank–Nicolson
scheme with second-order accuracy in time and space. Here, only three elliptic equations with constant coefficients should
be solved at each time step, which makes it easy to implement. However, the total energy of the decoupled scheme may
be increased. For example, we can replace the term un+ 1

2 in Eq. (3.19) by ũn+ 1
2 as following:

φn+1
− φn

∆t
= −

γ

ε

(
F

′

(φ̃n+ 1
2 ) + ξφn+ 1

2 − ξ φ̃n+ 1
2

)
+ γ ε∆dφ

n+ 1
2 − λ(φn+ 1

2 − ψ)

−
α

′

(φn) + α
′

(φn+1) |un
|
2
+ |ũn+1

|
2

− β

(Ad(φn) + Ad(φn+1)
− V0

)
, (4.1)
4 2 2
13
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Fig. 4. The time evolution of the total energy of the first-order (a) and second-order (b) schemes under a large time step ∆t = 100. Snapshots of
the phase fields are shown.

Fig. 5. The time evolution of the decoupled scheme with different time steps.

∇dpn+
1
2 − ∇d · (µ∇dun+ 1

2 ) +
α(φn) + α(φn+1)

2
un+ 1

2 = f, (4.2)

∇d · un+1
= 0. (4.3)

qs. (4.1)–(4.3) are a decoupled numerical scheme because we can firstly calculate φn+1 by Eq. (4.1) and then use
qs. (4.2)–(4.3) to calculate un+1 and pn+1. In order to compare with the decoupled numerical scheme, we use the same
arameters and initial conditions in Section 4.3. The experimental results are shown in Fig. 5. The time steps ∆t = 0.01
nd ∆t = 10 are used in Fig. 5(a) and (b), respectively. Observing these results, we can find that even though the solutions
o not blowup, the total energies are increased. Furthermore, if the time step is much higher, the solution of φ will become
ame as the initial condition.

.5. Effect of the parameter γ

Because E(φ) =
∫
Ω

(
ε
2 |∇φ|

2
+

1
ε
F (φ)

)
dx is proportional to the length of the optimal shape of Ω0. In general, if γ is

large, then the perimeter functional Γ (Ω0) is dominant and the interface of the shape is smooth. In this section, we will
consider the effect of γ . Here ξ = 1/2 is fixed. Under the same conditions in Section 4.2, we set γ = 10, 100, and 1000.
14



Y. Li, K. Wang, Q. Yu et al. Communications in Nonlinear Science and Numerical Simulation 111 (2022) 106433
Fig. 6. The effect of γ on the optimal results. The values of γ are shown below each figure.

Fig. 7. The evolutions of total energy with γ = 10,100 and 1000. Note that we have normalized the total energy by using the total energy at the
initial time.

The optimal designs obtained are shown in Fig. 6, from which we can see that the optimal results seem similar but the
volumes of fluid region are apparently different. Fig. 7 describes the evolution of energy corresponding to different values
of γ . Note that we have normalized the total energy by using the total energy at the initial time. For all the cases, the
total energy functionals are decreasing.

4.6. Effect of the external force f

Next, we study the effect of the external force f, which is imposed in the local circular region with center [0.5, 0.5]
and radius r = 0.1. The inflow and outflow boundary conditions are chosen as the same as those in Section 4.2. The initial
distribution of fluid is restricted in the design domain (0.25, 0.75) × (0, 1). Fig. 8 shows the optimal designs obtained with
different external force terms. From left to right, the external force terms are [−150, 0], [0, 0], and [150, 0], respectively.
Observing these results, we can find that the direction and the magnitude of the force affected greatly on the optimal
design. Due to the existence of the external force, the incompressibility condition prevents the fluid from having a much
larger or smaller velocity at the middle of the pipe than at the inlet and outlet. Therefore, the optimal designs will become
shaped at the middle of the pipe.

4.7. Effect of initial configurations

To test the effect of initial configurations, we perform a double pipes example as shown in Fig. 9. The inflow and
outflow are located in several discontinuous sections of Dirichlet boundaries. The centers of different sections are
[0, 1/4], [0, 3/4], [1, 1/4] and [1, 3/4]. Here, we set β = 2000 and ḡ = 1/3 for the inflow and outflow velocities,
15
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Fig. 8. The optimal designs obtained with different external force terms. (a)–(c) are the results with the external force terms are [−150, 0], [0, 0],
and [150, 0], respectively.

Fig. 9. Schematic illustration of the initial condition.

Fig. 10. (b) and (d) are the final results of initial configurations of (a) and (c), respectively.

espectively. Two different initial configurations are described as in Fig. 10(a) and (c). Fig. 10(b) and (d) are the optimal
onfigurations of Fig. 10(a) and (c), respectively. Obviously the different locations of inflow/outflow can lead to different
ptimal designs.

.8. Effect of volume constraints

To verify effect of volume constraints on the optimal design, we consider the bend pipe design problem in Fig. 11(a).
e set g = 1 and β = 500. The centers of inflow and outflow are located in [0, 3/4] and [3/4, 0]. The other parameter
16
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Fig. 11. (a) Schematic illustration of the inflow and outflow. (b), (c), and (d) are evolution of the phase field. (b) Initial shape. (c) Result with volume
constraint. (d) Result without volume constraint.

Fig. 12. Comparison between the evolution of total energy (a) and evolution of volume A(φ) (b) with and without volume constraints.

alues are γ = 10 and V0 = 0.5. The experiment with or without volume constraint is performed until T = 10. The
esults are shown as in Fig. 11. As can be seen, compared with the case with constraint, the thickness of the pipe wall
ithout constraint obviously increases. Fig. 12 indicates the evolution curves basically coincide with each other.

.9. Effect of the inlet and outlet size

The size of inlet and outlet plays a great role in simulation of blood flowing in blood vessels [64,65]. Here, the design
omain is Ω = (0, 2)× (0, 1) with a mesh grid 256 × 128. We set g = 1, β = 5000, γ = 10, and V0 = 0.55. The diameter

of inlet is 0.3 and the diameter of outlet is 0.6. The locations of inlet and outlet are shown in Fig. 13(a). The corresponding
centers are located in [0, 0.25], [0, 0.75] and [1, 0.5]. Fig. 13(b)–(d) show the evolved flow shapes at different times. In
order to investigate the effect of the diameter of the inlet and outlet, we compare three experiments in Figs. 14 and 15.
We find that the results obtained are indeed affected by the diameter of outlet and inlet.

4.10. Effect of the fixed solid structures

Now, we investigate how solid structures affect the fluid optimal designs. The solid structure is expressed by ψ .
Analogously to the previous example in Section 4.2, we choose the same default parameter values. The schematic of
the initial and boundary conditions are the same as Fig. 13(a), however, the diameters of inlet and outlet are set to be 1
and 0.3, respectively. A series of numerical simulations with varying solid structures are performed in this Section. Here,
varying solid structures are achieved by placing different numbers of solid balls in different positions in the same diffuser
as shown in the first row of Fig. 16. The evolution results are summarized in the second row of Fig. 16. We observe that
solid structures affect the optimal results obviously.

4.11. Optimization of a 3D diffuser

As the final example for topology optimization in fluid, a 3D diffuser is considered as shown in Fig. 17(a). The domain
is Ω = (0, 1)× (0, 1)× (0, 1) with a 100 × 100 × 100 mesh grid. Here, we set three flow profiles on the inflow boundary
17
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Fig. 13. (a) Schematic of the configuration for inflow and outflow. (b), (c), and (d) are evolutions of the flow in porous medium at time t = 0, 0.5,
and 1.5, respectively.

Fig. 14. The effect of outlet diameters on the optimal configuration for the flow. From left to right, the diameters of outlet are 0.8, 0.6, and 0.4,
respectively. The diameter of inlet is fixed as 0.6.

Fig. 15. The effect of inlet diameters on the optimal configuration for the flow. From left to right, the diameters of inlet are 0.8, 0.6, and 0.4,
respectively. The diameter of outlet is fixed as 0.6.

Fig. 16. Evolution of the phase field. Top: Initial configurations with different solid structures. Bottom: The optimal results corresponding to different
initial configurations.
18
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Fig. 17. The initial configuration of 3D diffuser (a) and the optimal result (b) by our scheme.

with centers of circles being (1/4, 1/2), (3/4, 1/4) and (3/4, 3/4) on the plane of x = 0. We set two flow profiles on the
utflow boundary with centers of circles being (1/2, 1/4) and (1/2, 3/4) on the plane of x = 1. Note that the radius of
ll circles equals 0.24. We set g = 2 and g = 3 for the three inflow profiles and the two outflow profiles, respectively.

V0 = 0.5 is used and other parameter settings are the same as for the previous 2D problems in Section 4.2. It can be seen
from Fig. 17 that the optimal configuration obtained is relatively smooth and clear after 100 iterations, which indicates
that our proposed scheme can be applied to solve the three-dimensional optimization problem.

5. Conclusion

In this paper, we presented first- and second-order unconditionally energy stable schemes for fluid-based topology
optimization problems. Using a porous media approach, our objective functional composed of five terms including
mechanical property, Ginzburg–Landau energy, two penalized terms for solid, and the volume constraint. We coupled the
Stokes type equation and the Allen–Cahn equation to obtain the evolved equation for fluid-based topology optimization.
We used the backward Euler method and the Crank–Nicolson method to discretize the coupling system. The first- and
second-order accurate schemes were presented for the system. The proof of unconditional stabilities for our proposed
schemes was given. For the numerical solutions, we used the preconditioned conjugate gradient method to solve the
system. Several numerical tests were performed to verify the efficiency and accuracy of our proposed schemes. There
have been quite a few existing works of convergence analysis and error estimate for the phase field model coupled
with fluid motion, such as convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw
equation [66], error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system [67]. In the future,
we will consider the convergence analysis and error estimate for the fluid-based topology optimization problem. It is well
known that the original Allen–Cahn equation satisfies the maximum principle. While it is difficult to prove that Eq. (2.19)
satisfies the maximum principle or not. Recently, a class of maximum principle preserving schemes were studied for the
generalized Allen–Cahn equation [59,61]. In the future, we will consider a maximum principle preserving and energy
stable scheme for fluid-based topology optimization problem.
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